
HAL Id: hal-04642653
https://hal.science/hal-04642653

Submitted on 10 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical Study of Fluid-Structure Interactions in Tube
Bundles With Multiphase-POD Reduced-Order

Approach
Marie Pomadere, Erwan Liberge, Aziz Hamdouni, Elisabeth Longatte,

Jean-François Sigrist

To cite this version:
Marie Pomadere, Erwan Liberge, Aziz Hamdouni, Elisabeth Longatte, Jean-François Sigrist. Numer-
ical Study of Fluid-Structure Interactions in Tube Bundles With Multiphase-POD Reduced-Order
Approach. ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, Jul
2012, Nantes, France. pp.137-146, �10.1115/ESDA2012-82462�. �hal-04642653�

https://hal.science/hal-04642653
https://hal.archives-ouvertes.fr


NUMERICAL STUDY OF FLUID-STRUCTURE INTERACTIONS IN TUBE BUNDLES WITH MULTIPHASE-
POD REDUCED-ORDER APPROACH  

Marie POMAREDE 
LaMSID – UMR CNRS/EDF n°2832 

1 avenue du Général de Gaulle 

92141 CLAMART Cedex, France 

marie.pomarede@laposte.net 

Erwan LIBERGE 
LaSIE – FRE CNRS 3474 

Université de La Rochelle - Avenue Michel CREPEAU 
17042 LA ROCHELLE Cedex 1, France 

Aziz HAMDOUNI 
LaSIE – FRE CNRS 3474 

Université de La Rochelle - Avenue Michel CREPEAU 
17042 LA ROCHELLE Cedex 1, France 

Elisabeth LONGATTE 
LaMSID – UMR CNRS/EDF n°2832 

1 avenue du Général de Gaulle 
92141 CLAMART Cedex, France 

Jean-François SIGRIST 
Département Dynamique des Structures 

CESMAN 
DCNS Research 

44620 LA MONTAGNE, France 

ABSTRACT 

Fluid-Structure Interactions are present in a large number of systems 
of nuclear power plants and nuclear on-board stoke-holds. 
Particularly in steam generators, where tube bundles are submitted to 
cross-flow which can lead to structure vibrations. We know that 
numerical studies of such a complex mechanism is very costly, that is 
why we propose the use of reduced-order methods in order to reduce 
calculation times and to make easier parametric studies for such 
problems.  
We use the multiphase-POD approach, initially proposed by Liberge 
(E. Liberge; POD-Galerkin Reduction Models for Fluid-Structure 

Interaction Problems, PhD Thesis, Université de La Rochelle, 2008). 
This method is an adaptation of the classical POD approach to the 
case of a moving structure in a flow, considering the whole system 
(fluid and structure) as a multiphase domain. We are interested in the 
case of large displacements of a structure moving in a fluid, in order 
to observe the ability of the multiphase-POD technique to give a 
satisfying solution reconstruction. We obtain very interesting results 
for the case of a single circular cylinder in cross-flow (lock-in 
phenomenon). Then we present the application of the method to a 
case of confined cylinders in large displacements too. Here again, 
results are encouraging.  
Finally, we propose to go further presenting a first step in parametric 
studies with POD-Galerkin approach. We only consider a flowing-
fluid around a fixed structure and the Burgers' equation. A  future 
work will consist in applications to fluid-structure interactions. 

INTRODUCTION 

Flow induced vibrations (FIV) mechanisms  in tube 
bundle system [8][10][15][29] are still encountering a 
large interest in the community of researchers and 
industrialists, because there are found in a lot of energy 
systems components, like for example nuclear power 
plants [27][28] or nuclear on-board stokeholds (steam 
boilers), as well as various heat exchangers [6][21][33]. 
As the cost of numerical calculations to lead a complete 
study of FIV mechanisms in a tube bundle is well-known 
to be very high [18][34], the use of low-order methods 
represents an interesting alternative to achieve an 
efficient work at low cost. Model reduction have been 
used since years through various fields like automatism , 
fluid mechanics [1][13], structure mechanics [3],... And 
more recently to fluid-structure interactions (FSI) 
[4][11][22][24][30].  
Here we propose to use the adaptation of the POD-
Galerkin method to FSI which is the Multiphase-POD 
technique [22][23] to treat cases of a single circular 
cylinder and of a confined cylinder in tube-bundle, able 
to move under a cross-flow with large displacements. 
The main advantage of Multiphase-POD is that it gives a 
robust method to study large displacements of the 
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structure, when other reduced-order techniques for FSI 
need, to the author's knowledge, the small displacements 
hypothesis to be set up. 
The paper is organized as follows: first, a description of 
the multiphase-POD method is given as a recall. Then, 
we present two applications of this technique in a second 
part. The first model is the well-known case of large 
displacements (lock-in phenomenon) of a single circular 
cylinder under cross-flow at Re=100, the second case is 
a tube bundle configuration, simpler than real cases of 
heat exchangers but close to models that are used in 
complete calculation numerical studies. Finally, the third 
part is dedicated to two elementary cases of parametric 
studies for a fluid domain (without moving boundaries) 
and for the Burgers' equation.   

1. MULTIPHASE-POD APPROACH

In the framework of this paper, we consider that POD-
Galerkin method is well-known (see for example 
[17][20][35]) and we focus on its adaptation to FSI 
through Multiphase-POD. Main variables used in this 
article are depicted in Table 1: 

Variable Definition 
ρ  Global density (kg.m 3− ) 

µ  
Global dynamic viscosity 
(kg.m 1− .s 1− ) 

u Global velocity field 
p Global pressure field 
σ Constraints tensor

fg A variable g  in the fluid
domain

sg A variable g  in the solid
domain

Tab. 1. Main variables of the system 

Flow-Induced Vibrations problems that we want to 
numerically study, i.e. single circular cylinder and tube 
bundle vibrations under a cross flow are leaded with a 
classic ALE approach [14]. It is important to recall that 
the application of the POD-Galerkin method cannot be 
made directly in that case: as POD modes are 
exclusively spatial modes, and as mesh nodes take 
several positions during a complete ALE calculation, 
information of their position are lost while the POD base 
is constructed. It is thus necessary to work for example 
with a non-moving mesh technique in order to get round 
this problem. Liberge and Hamdouni [22] proposed an 

original method to treat the case of a fluid-structure 
interaction problem with the POD-Galerkin method, 
inspired by Glowinski et al. [16]. This technique is 
called “Multiphase-POD method”.  
The main idea is to consider a global domain containing 
the fluid and the solid, and to consider the latter as 
another fluid with its specific characteristics, in order to 
insure the non-deformable characteristic of the fluid. The 
domain is thus considered as a zone occupied by a two-
phase flow. A unique and fixed mesh is created on this 
global domain. Then, data obtained from (for example) a 
classic ALE complete calculation are interpolated on this 
fixed mesh, so that a POD basis could be constructed. 
The description of the multiphase method is the 
following: lets consider a global domain Ω  containing

the fluid domain )(tfΩ  and the solid domain )(tsΩ  at
each time step t , where the solid domain is considered 
as a particular fluid with its own physical characteristics 
(density, viscosity).  

We have )()()( ttt isf Γ∪Ω∪Ω=Ω where )(tiΓ is the
interface between fluid and structure domains. A global 

velocity field )(Ω∈ Hu  (with H  a Hilbert space) is
considered: 

),(),(),(),(),( txtxutxtxutxu
sf sf ΩΩ += χχ (1) 

where ),( tx
fΩχ  and ),( tx

fΩχ  are respectively 
characteristics functions defining the considered point 
position: 
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Taking into account these notations, a global weak form 
of Navier-Stokes equations on Ω  is made possible to
formulate: 
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Where *
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Let's define both components of the constraints tensor 
σ .

)(2),(, fijf

j

iijf uDptx µδσ +−=         (4) 

where
j

iδ  is the Kroenecker symbol and ijD  is the 
deformation velocity tensor.  
The definition of the structural component 

),( txsσ allows taking into account that the solid has its
specific viscosity and the non-deformable structural 
condition. For the viscosity, a penalization term is used: 

in order to specify that the domain )(tsΩ is solid, the
viscosity  is artificially increased. To insure the non-
deformable condition, a Lagrange multiplier Λ  is added.
Thus, the structural component of the constraints tensor 
is: 

)(2),(, sijs

j

iijs uDptx µδσ +Λ+−=          (5) 
Developing the global weak form with these definitions 
and making the Proper Orthogonal Decomposition on 
the global velocity flow field lead to the construction of 
a dynamical system for the whole domain Ω  which is
fixed all over the studied time interval. Taking into 
account the space-time decomposition of the global 
velocity field as: 

∑
=

Φ=
N

n

nn xtatxu
1

)()(),( (6) 

Where { } *,...,1 Nnn =Φ are elements of the POD basis and

)(tan are time coefficients, the final dynamical system is 
the following: 
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for each Nn ,...,1=  where N  is the number of POD
modes. Equation (7.b) is the non-deformability condition 
and (7.c) the characteristic function transfer. 

Coefficients ninijnin E ,C ,B ,A are not detailed here, but a
very important point to notice is that they are not all 
exclusively spatial coefficients, because some of them 

contain the physical characteristics ),( txρ  and ),( txµ .
Thus, they have to be re-calculated at each time step: the 
time calculation is increased in comparison with a 

classic POD model without moving structure. But this 
time calculation is still less than a complete calculation. 
Another approach consists in making the proper 
orthogonal decomposition of the characteristic function 

),( tx
fΩχ  also, which allows avoiding the time

dependence of all coefficients of the dynamical system. 
For more precisions, see [23]. 
Practical implementation of the Multiphase-POD 
technique is described below. 

Multiphase method implementation: 

1. Lead a complete ALE calculation of the fluid-
structure interaction problem during a time
interval [0,T]

2. Extract enough snapshots from this complete
calculation

3. Create a unique Cartesian fixed mesh containing
both fluid and solid domains

4. Interpolate each extracted snapshot onto the
fixed reference mesh: creation of new fixed
snapshots

5. Apply the classic POD approach for the new
snapshots constructed on the reference mesh

6. Construct the dynamical system following (7)
and resolve it with a classic method (Runge-
Kutta for example). 

2. FSI APPLICATIONS WITH MULTIPHASE-
POD

2.1. Single circular cylinder under cross-flow 

In order to test the multiphase method in the case of FIV, 
a simple case is considered before its application to the 
case of tube bundle. We test the configuration of a single 
circular cylinder under a cross-flow. Work on such a 
case is interesting to validate the method, as Liberge and 
Hamdouni  proposed a similar configuration in the case 
of low structure displacement amplitude. The cylinder is 
allowed to move in the transverse direction; the fluid 
domain is considered as infinite, as boundaries are far 
enough from the structure.  
Here we consider the case of large displacements of the 
cylinder (without small displacement hypothesis): the 
frequency lock-in phenomenon [19][31][36] is 
reproduced. The case of small displacements of a 
cylinder under cross-flow has been studied in [22]. The 
geometry of the studied case is visible on figure 1.  
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Fig. 1. Case of a single circular cylinder and 
boundary conditions 

The cylinder is allowed to move in the y-direction (see 
figure 1) only. The effects that the flow exerts on the 
structure are modeled through a restoring force.  
Reynolds number is Re=100, fluid is water. Cylinder 
displacement maximal amplitude is A*=0,58D, where D 
is the cylinder diameter: the frequency lock-in 
mechanism is reached. 
Complete calculations are leaded with the CFD code 
��������	
�������and the cylinder is just considered as a 
mass point on its gravity center.  
The reduced-order model is constructed with the 
following characteristics: 250 snapshots are extracted 
from the complete ALE calculation, 6 POD modes are 
constituting the POD basis. The fixed reference mesh 
contains 200 x 250 points. The dynamical system 
resolution in the present case is simplified: indeed, the 
penalization term is sufficient to guarantee the non-
deformable condition. Time integration scheme is 
Runge-Kutta 4. 
The two first time coefficients are represented on figure 
2, they are well reconstructed by the reduced model. 
And, as they are containing the main part of the system 
energy, this good reproduction allows a good 
reconstruction of the velocity flow field and the cylinder 
displacement is also well reproduced (figure 3), which is 
confirming that 1) the Multiphase-POD method is able 
to reproduce a structure displacement and a fluid flow 
with its global formulation and 2) the Multiphase-POD 
method is able to reproduce large displacements of the 
structure. The latter point is interesting for the 
willingness of studying instability behaviors. 

Fig. 2. Two first time coefficients of the velocity field 
in the single circular cylinder case with large 
displacements under cross-flow. +++ direct 

coefficient ; xxx multiphase-POD reconstruction 

Fig. 3. Gravity center displacement reconstruction of 
the cylinder in the single circular cylinder case with 

large displacements under cross-flow. +++ direct 
calculation ; xxx multiphase-POD reconstruction 
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2.2. Tube bundle under cross-flow 

In order to consider a configuration close to the case of a 
tube bundle of heat exchanger, we consider a circular 
cylinder in a confined configuration. Non-dimensional 
numbers are adapted to this configuration, here Reynolds  

number is defined as µ
ρ

=
DU

R p
e . The step fluid velocity 

pU  takes into account the tube confinement. It is defined 

as: 
DP

P
UU p −

= ∞ where ∞U is the equivalent mean

flow velocity that would have been imposed in an 
infinite domain, D is the cylinder diameter and P is the 
pitch ratio (distance between two neighbouring cylinders 
centres). Geometry and boundary conditions are depicted 
on figure 4: a 2D domain and only one tube and its 
neighbors are considered, with periodic boundary 
conditions. Thus, the domain is representing an infinite 
regular tube bundle. 

Reynolds number is fixed to 2000=eR , complete 
calculation is also leaded with ��������	
��  which has 
been validated in various FSI studies in tube bundle 
systems [7][18][25]. Large displacements in the y 
direction (see figure 4) of the central cylinder are 
considered (A* = 0.35D when P/D = 0.44D). The 
reference fixed mesh contains 200 x 200 points. 

Fig. 4. Boundary conditions for the confined tube 

Figure 5 represents the comparison between the global 
velocity flow field from the complete calculation and the 
interpolated velocity flow field. It allows to check the 
precision of the snapshots interpolation algorithm. 

1t

2t

 Complete calculation  Interpolated velocity 

Fig. 5. Comparison between complete and 
interpolated fluid velocity field at two dates 1t  and 2t  

Figure 6 shows the comparison between the central 
cylinder displacement calculated by complete calculation 
and by Multiphase-POD. The reconstruction gives very 
satisfying results, which is confirmed by the observation 
of the two first time coefficients of the global velocity 
flow field (figure 7). 

Fig. 6. Comparison between complete and 
Multiphase-POD reconstruction of the central 

cylinder displacement.        Complete calculation, +++ 
Multiphase-POD reconstruction  

The reconstruction of large displacements with 
Multiphase-POD in the case of a confined tube bundle is 
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very interesting. It allows to plan for its implementation 
to unstable fluid-structure interactions like fluid-elastic 
instability occurring in tube bundle systems 
[9][12][21][29][32]. 

3. REDUCED-ORDER MODEL AND
PARAMETRIC STUDIES

3.1. Case of a single fixed cylinder 

The main interest of reduced-order models consist in 
their ability to reconstruct various solutions of a system 
where one or several parameters have been changed. 
Indeed, the reconstruction of a solution for which we 
already have the complete calculation is not satisfying. 
Thus, we propose here a first step in this sense: for a 
given parameter, we use the POD basis obtained from a 
given value of the parameter and the system for other 
values of the parameter is projected onto this unique 
basis.  
Here is an example: lets consider the case studied in the 
paragraph 2.1 with, here, a fixed single circular cylinder 
at Re=100. The classic POD-Galerkin method is applied, 

and a POD basis { }
Nnn ,...,1

1
=Φ  is constructed. Then, 

dynamical systems for 150 ,140 ,130 ,120 ,110=eR  are 

projected onto { }
Nnn ,...,1

1
=Φ . Results are visible on figures 8 

and 9 in terms of velocity flow field and vorticity. 

The main characteristics of the flow field are well 
reproduced, but vortex shedding frequency observed on 
figure 9 is not exactly reproduced: it means that the 

unique POD basis { }
Nnn ,...,1

1
=Φ  obtained for Re=100 is not

sufficient for the representation of the whole features of 
the flow in this panel of Reynolds number values. 

Fig. 7. Comparison between complete and 
Multiphase-POD reconstruction of two first time 

coefficients.        Complete calculation, +++ 
Multiphase-POD reconstruction  

3.2. Case of a tube bundle 

The same method is applied to the case of a fixed tube 
bundle in a similar configuration than in part 2.2. 
Reynolds number for the reference case is Re=2600, a 

unique POD basis { }
Nnn ,...,1

1
=Φ  is constructed. Dynamical 

systems are calculated for 2700  and  2650=eR . Results 
for the velocity field are presented on figure 10. 
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    complete calculation                POD-Galerkin 

Fig. 8. Comparison between complete and POD-
Galerkin reconstruction of velocity for various 

Reynolds number with a unique POD basis (Re=100) 

    complete calculation                POD-Galerkin 

Fig. 9. Comparison between complete and POD-
Galerkin reconstruction of vorticity for various 

Reynolds number with a unique POD basis (Re=100) 
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Fig. 10. Comparison between complete and POD-
Galerkin reconstruction of velocity for various 

Reynolds number with a unique POD basis 
(Re=2600), case of a tube-bundle 

The main reconstruction is good but not in all scales. We 
propose here an amelioration of this parametric method 
with the help of several basis interpolations.  

3.3. Basis interpolation 

Amsallem and Farhat [2] propose the introduction of 
basis interpolation in order to improve the reconstruction 
of solution for a new value of the considered parameter. 
Lets consider the following problem: 








=

=+
∂
∂

0)0(

),(

uu

fuA
t

u λ
 (8) 

with the studied parameter λ . For example, if we know 

M POD basis { } { } { }
Nn

M

nNnnNnn ,...,1,...,1
2

,...,1
1   ...,  ,  , === ΦΦΦ

calculated to their corresponding parameter values 

Mλλλ   ...,  ,  , 21 , it is interesting to calculate the POD basis 
{ }

Nnn ,...,1
new

=Φ  associated with a new value newλ  of the
parameter without leading the complete calculation. 
Thus, an interpolation of the known POD basis is 
proposed by Amsallem and Farhat thanks to the use of 
Grassmann manifolds, in order to keep the new basis 
orthonormal. The idea is the following: we consider the 
Grassmann manifold corresponding to the set of 

subspaces of dimension N in �n (where n is the 
dimension of the complete system). Each known POD 
basis can be represented by a point on this manifold, and 
a tangent space can be considered at this point. The 
interpolation between basis will be done on this space 
which is a vector space. Then, a re-interpolation onto the  
Grassmann manifold is done in order to obtain the new 

POD basis { }
Nnn ,...,1

new
=Φ . For a complete description of the 

method and algorithm, see [2]. 

Here we present an elementary example with the 1D 

Burgers equation on )(H1
0 Ω  where [1,0]=Ω  defined

below: 









π==

=
∂
∂ν−

∂
∂+

∂
∂

)xsin()x(u)0,x(u

0
x

u

x

u
u

t

u

0

2

2

(9) 

where ν  is the dynamical viscosity which is the
considered parameter.  We consider the case where 

-12
1 sm 1.0=ν . We construct the basis { } erpint,1

N,...,1nn =Φ which

is the interpolation of M=3 basis { }2

N,...,1nn =Φ ,  { }3

N,...,1nn =Φ

and { }4

N,...,1nn =Φ respectively associated with 
-12

2 sm 01.0=ν ,
-12

3 sm 2.0=ν  and
-12

4 sm 1=ν .

Then, we compare { } erpint,1

N,...,1nn =Φ with the POD basis

{ }1

N,...,1nn =Φ that have been classically obtained with

snapshots construction (see figure 11). We can observe 
that both are not exactly the same. But, when we 
compare the results obtained by the solution 

reconstruction with each POD basis { }1

N,...,1nn =Φ and

{ } erpint,1

N,...,1nn =Φ (figures 12 and 13), we can conclude that the

interpolation method gives a satisfying solution. 
This method is interesting since with a small number M 
of POD basis relatively close with each other, it is 
possible to construct new basis that keep POD 
characteristics for new parameters with the assurance of 
a good reproduction of the unknown field. 
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a) 1st mode b) 2nd mode

c) 3rd mode d) 4th mode

Fig. 11. Comparison between both POD basis

{ }1

N,...,1nn =Φ and { } erpint,1

N,...,1nn =Φ associated with

-12
1 sm 1.0=ν  for 4 POD modes. { }1

N,...,1nn =Φ

{ } erpint,1

N,...,1nn =Φ

Fig. 12. Comparison between complete Burgers 
equation for -12sm 1.0=ν  and its reconstruction with 

the classical POD basis { }1

N,...,1nn =Φ .          Complete 

calculation, +++ POD reconstruction  

Fig. 13. Comparison between complete Burgers 
equation for -12sm 1.0=ν  and its reconstruction with       

{ } erpint,1

N,...,1nn =Φ .            Complete calculation, +++ POD

reconstruction  

CONCLUSION 

In this paper, the Multiphase-POD method is presented 
and applied to the case of a single circular cylinder 
moving under cross-flow and a confined cylinder in tube 
bundle under cross-flow. The method was already shown 
to be efficient in the case of small displacements of a 
structure under flow solicitations and here, we show its 
efficiency in the case of large displacements of the 
structure. This is a very interesting point in order to treat 
instabilities that can appear in a large number of 
industrial systems. An on-going work presented here is 
the application of parametric studies with the help of 
reduced-order methods. The POD-Galerkin method 
already gives interesting results in fluid-flow studies, 
and an improvement of this technique is tested to the 
Burgers equation. Further work will consist in the 
application of these methods to the case of FSI. 
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