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Abstract.

As in the work of Tartar ([59]), we develop here some new results on nonlinear interpolation of

α-Hölderian mappings between normed spaces, by studying the action of the mappings on K-

functionals and between interpolation spaces with logarithm functions. We apply these results

to obtain some regularity results on the gradient of the solutions to quasilinear equations of

the form

−div (â(∇u)) + V (u) = f,

where V is a nonlinear potential and f belongs to non-standard spaces like Lorentz-Zygmund

spaces. We show several results; for instance, that the mapping T : T f = ∇u is locally or

globally α-Hölderian under suitable values of α and appropriate hypotheses on V and â.
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1. Introduction - Notation - Preliminary results

1.1. Introduction.

The Marcinkiewicz interpolation theorems for linear operators acting on Lebesgue spaces

turned out to be an essential tool for studying regularity of solutions for linear partial dif-

ferential equations (P.D.E.s) in Lp-spaces. Then, Jaak Peetre ([45, 46]) introduced a method

(K-method) to give a general definition of interpolation spaces between two normed spaces

embedded in a same topological space. His definition allows to extend the Marcinkiewicz’s

results of linear operators to those ones acting on abstract normed spaces. But his results

allow also to go further in the study of regularity of solutions of linear equations on spaces

different from Lp spaces. The main problem to apply Peetre’s definition is the identification

of the interpolated spaces. Some results in this direction exist: for instance, we did such a

study with applications to linear P.D.E.s in recent papers (see [27], [2] or [29]) using new

spaces as grand or small Lebesgue spaces, sometimes combining the regularity method with

a duality method.

Later, in our knowledge, L. Tartar [59], under the supervision of J.L. Lions, was the first

to give some interpolation results on nonlinear Hölderian mappings (which include Lipschitz

mappings) and he applied them to a variety of boundary value problems as bilinear applica-

tions, to semi-linear P.D.E.s but also to variational inequalities .

This last paper of L. Tartar, recent results development concerning the interpolation spaces
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with logarithm functions (see, for instance [34], and the previous references) and the ap-

pearance of the new operators in P.D.E.s as anisotropic ~p-Laplacian or variable exponents

p(·)-Laplacian, were the main motivations which lead us to reconsider the work of L. Tartar

[59] and to show that we may have Hölder mappings associated to quasilinear equations in

order to obtain new regularity results.

So, we extend first Tartar’s results on nonlinear interpolations mappings T to couples of spaces

with a logarithm function by studying the action of the mapping T on the K-functional as-

sociated to those couples. This is the purpose of the second section. Here is an example of

such result:

Let X1 ⊂ X0, Y1 ⊂ Y0, be four normed spaces, and let 0 < α 6 1. Assume that T : Xi → Yi

is globally α-Hölderian for i = 0, 1 with Hölder constant Mi, i.e.

∃Mi > 0 such that ||T a− T b||Yi 6Mi||a− b||αXi , i = 0, 1.

Then, for all a ∈ X0, b ∈ X1 one has

K(T a− T b; tα) 6 2 Max (M0;M1)K(a− b; t)α.

As a consequence, we derive the following result:

Let X1 ⊂ X0, Y1 ⊂ Y0 four normed spaces. Assume that T : Xi → Yi is globally α-Hölderian

for i = 0, 1. For 0 6 θ 6 1, 1 6 p 6 +∞, if X1 is dense in X0, then

T is an α-Hölderian mapping from (X0, X1)θ,p;λ into (Y0, Y1)θ, p
α

;λα.

The last part of the second section is devoted to some identification of interpolation spaces

using couples of Lebesgue or Lorentz spaces. This allows us to recover spaces as Lorentz-

Zygmund spaces or GΓ-gamma spaces. The list is not exhaustive but was chosen to be

applied later on, in the fourth and the fifth sections.

To define the appropriate mappings in those last sections, we consider two types of formula-

tions, the usual weak formulation and the entropic-renormalized formulation for the quasilin-

ear P.D.E.s of the form Au+V (u) = f, f in L1(Ω), where A is a Leray-Lions type operator,

V a potential, and we may prove the existence and uniqueness of solution according to the

space where the data f belongs. We can define a non-linear operator, T : L1(Ω) → Y0i,

i = 1, · · · , n : to f ∈ L1(Ω) we associate the i-th component of the gradient of the solution

in an appropriate space Y0i. The main step is to prove that such a nonlinear operator is a
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Hölderian mapping. This is done in each application from section four to six. The fundamen-

tal lemma (see Lemma 3.1 below) to obtain such a result in Marcinkiewicz spaces for L1

data reads as follows:

Let ν be a non negative Borel measure and h : Ω → IR+, g : Ω → IR+, be two ν-measurable

functions. Then

ν
{
h > λ

}
6

1

λ

∫
{g6k}

hdν + ν{g > k} ∀λ > 0, ∀ k > 0.

Replacing L1(Ω) by other Lr-spaces we can have more regularity on the gradient of the

solution.

We then apply the abstract results on interpolation mappings obtained in the second section.

Let us notice that our estimates are optimal in many cases. Therefore we improve some

well-known regularity results as in Lorentz spaces but also we have an easy tool to derive

regularity of the gradient when the data f is in spaces as Lm,r
(
Log L

)α
, m > 1 or in small

spaces L(r,θ(Ω) or Orlicz spaces.

For convenience, we took only models for the nonlinear operator A. More precisely, we study

the regularity of the weak or entropic-renormalized solution of a p-laplacian type operators

such as −div
(
|∇u|p−2∇u

)
+ V (x;u) = f , or its anisotropic version in a bounded smooth

domain Ω of IRn,

−
n∑
i=1

∂

∂xi

[∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

]
+ V (x;u) = f, 1< pi, p<+∞ , i=1,. . .,n ,

or the variable exponents version of p(·)-Laplacian, where V is nonlinear. We only consider

the Dirichlet homogeneous condition on the boundary u = 0.

An example of regularity that we can prove (it will be a consequence of Proposition 4.4, see

below) is: If u is a solution of the quasilinear equation (32) (see below), 2 6 p < n and

f ∈ Lk,r(Ω), then the gradient of the solution u belongs to [Lk
∗(p−1),r(p−1)(Ω)]n, with k 6 (p∗)′

(here (p∗)′ denotes the conjugate of the Sobolev exponent of p, and k∗ denotes the Sobolev

exponent of k). Moreover, we have

||∇u||Lk∗(p−1),r(p−1) 6 c||f ||
1
p−1

Lk,r
.

An example of non-standard regularity result that can be obtained from Theorem 4.3 (see

below) for the solution u is:

∫ 1

0

((∫ 1

t

|∇u|∗(s)pds
) 1

p

(1− log t)λα

) p
α

dt

t


α
p

6
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c

[∫ 1

0

((∫ 1

t

f∗(s)
(p∗)′ds

) 1
(p∗)′

(1− log t)λ

)p

dt

t

]α
p

,

whenever the right hand side of the inequality is finite. Here α = 1
p−1

, 2 6 p < n, λ ∈ IR .

Moreover, if f ∈ L
m′
m′−θ ,p2

(
LogL

)λ
, then |∇u| ∈ Lpθ,p2(p−1)

(
LogL

) λ
p−1

.

From Section 4 to Section 6, we give some applications of the abstract results obtained in

Sections 2 and 3. For instance, here is the basis of the existence of an Hölderian mapping

result for anisotropic equation: Let u be the entropic-renormalized solution of equation (48)

(see below). Then there exists a constant c > 0 independent of u and f such that

(1) meas {|u| > k} 6 c||f ||
p∗
p

L1(Ω)k
− p
∗
p′ , ∀ k > 0.

(2)

∥∥∥∥ ∂u∂xi
∥∥∥∥
L
n′pi,
p′ ∞(Ω)

6 c||f ||
p′
pi

L1(Ω), i = 1, . . . , n.

For the sake of completeness, although the existence and uniqueness for quasilinear equations

are widely done in the literature and are not the main issue of our work, we shall give some

examples of proofs of uniqueness and existence. Namely, when the operator A has variable

exponents, we have new results and we show in particular that:

There exists a constant c > 0 depending only on p, n, Ω such that

meas
{
|∇u|p(·) > λ

}
6 c ψ1(||f ||1)

1
1+|a1|λ

− |a1|
1+|a1| ∀λ > 0.

Such topic is developed in the last section 6. The method is widely inspired by the previous

works (see for instance [7], [49], [50], [53], [54]), and uses recent theorems as the one given

in [28]. Moreover, the same method can be used to prove the existence and uniqueness of

entropic-renormalized solution for general operators including the anisotropic case.

For other results concerning interpolation of Lipschitz operators and other applications of

Interpolation theory, also in P.D.E.s, see [15, 40, 41, 42].

1.2. Notations -Preliminary results.

We shall adopt our usual notations. For a measurable f ∈ Ω→ IR, we set for t > 0

Df (t) = meas
{
x ∈ Ω : |f(x)| > t

}
,

and f∗, the decreasing rearrangement of |f |, is defined as follows: for s ∈ (0, |Ω|), |Ω| being

the measure of Ω,

f∗(s) = inf
{
t : Df (t) 6 s

}
.
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We also set

f∗∗(s) =
1

s

∫ s

0

f∗(t)dt.

The Lorentz space Lp,q(Ω), 1 < p < +∞, 1 6 q 6 +∞, is defined as the set of measurable

functions f for which

||f ||p,q =



[∫ |Ω|
0

[t
1
pf∗∗(t)]

q dt

t

] 1
p

if q < +∞,

sup
0<t<|Ω|

t
1
pf∗∗(t) if q = +∞,

is finite,

while ||v||q denotes the norm in Lq(Ω), 1 6 q 6 +∞.

If A1 and A2 are two quantities depending on some parameters, we shall write

A1 . A2

if there exists c > 0 independent of the parameters such that A1 6 cA2, and

A1 ' A2

if and only if A1 . A2 and A2 . A1.

For the anisotropic problem, we will need the following Troisi’s Sobolev inequalities [61, 60].

Setting

1

p
=

1

n

n∑
i=1

1

pi
and p∗ =

np

n− p
if

n∑
i=1

1

pi
> 1, ~p = (p1, . . . , pn) ,

we have

Theorem 1.1. (Poincaré-Sobolev inequality for anisotropic Sobolev spaces)

If 1 6 p < n, 1 6 pi < n (i = 1, . . . , n), then the following inequalities hold true.

(1) There exists a constant C = C(n, ~p) such that

(1)

(∫
IRn
|u|p∗dx

) n
p∗

6 C
n∏
i=1

(∫
IRn
|∂xiu|pidx

) 1
pi

∀u ∈ C∞c (IRn).

(2) For any ~θ = (θ1, . . . , θn) such that θi > 0 for all i = 1, . . . , n and
n∑
i=1

1

θi
=
n

p
, there

exists a constant C~θ = C(n, ~p, ~θ) such that

(2)

(∫
IRn
|u|p∗dx

) p
p∗

6 C~θ

n∑
i=1

(∫
IRn
|∂xiu|pidx

) θi
pi

∀u ∈ C∞c (IRn).

In particular, we shall use the case θi = pi for all i = 1, . . . , n.
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We shall denote by W 1,~p
0 (Ω) the closure of C∞c (Ω) with respect to the norm:

||v||1,~p =
n∑
i=0

∥∥∥∥ ∂v∂xi
∥∥∥∥
pi

.

The following Poincaré-Sobolev inequality holds true in W 1,~p
0 (Ω).

Corollary 1.1.1 (of Theorem 1.1).

(1) There exists a constant C = C(n, ~p) such that[∫
Ω

|v|p∗(x)dx

] 1
p∗

6 C

(
n∑
i=1

∫
Ω

|∂iv|pi
) 1

p

for all v ∈ W 1,~p
0 (Ω), if

n∑
i=1

1

pi
> 1.

(2) If
n∑
i=1

1

pi
< 1, then

W 1,~p
0 (Ω) ⊂> L∞(Ω).

Moreover, there exists a constant C(n) > 0 such that

||v||∞ 6 C(n)
n∏
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥ 1
n

pi

.

(3) If
n∑
i=1

1

pi
= 1, then

W 1,~p
0 (Ω) ⊂> Lr(Ω)

for all r < +∞.

Remark 1.1. The two last statements can be found also in [58].

As to the case of variable exponent spaces, for u : Ω→ IR measurable, we set

Φp(·)(u) =

∫
Ω

|u(x)|p(x)dx

and we consider the norm:

(3) ||u||p(·) = inf
{
λ > 0 : Φp(·)

(u
λ

)
6 1
}
, (inf ∅ = +∞).

Setting

Lp(·)(Ω) = {u : Ω→ IR measurable such that ||u||p(·) < +∞},

the space (Lp(·)(Ω); || · ||p(·)) is a Banach function space and an equivalent norm for u is the

following Amemiya norm

(4) |u|p(·) = inf
λ>0

λ
(

1 + Φp(·)

(u
λ

))
,
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which is equivalent to the norm in (3) since

(5) ||u||p(·) 6 |u|p(·) 6 2||u||p(·).

We set

L1
+(Ω) = {v ∈ L1(Ω) : v > 0} , L

p(·)
+ (Ω) = Lp(·)(Ω) ∩ L1

+(Ω).

We always assume that

1 < p− = inf{p(x) : x ∈ Ω} 6 p+ = sup{p(x) : x ∈ Ω} <∞.

Proposition 1.1 ([16], Corollary 2.81 p. 63 and Corollary 2.23 p. 25).

Under the above assumptions on p, one has:

• Lp(·)(Ω) is reflexive.

• For all u ∈ Lp(·)(Ω),

||u||p(·) 6
(∫

Ω

|u(x)|p(x)dx

) 1
p−

+

(∫
Ω

|u(x)|p(x)dx

) 1
p+

.

We also have a Poincaré-Sobolev type inequality for variable exponent spaces. Following [19],

[16] for the next theorems (see also [20]), we shall consider exponents p(·) being bounded

log-Hölder continuous functions on a bounded open set Ω, i.e. satisfying the property

There exists a constant c1 > 0 such that

Log (e+ 1/|x− y|)|p(x)− p(y)| 6 c1,∀(x, y) ∈ Ω× Ω.

Assuming also p+ < n, one can consider the Sobolev variable exponent

p∗(x) =
np(x)

n− p(x)
, x ∈ Ω,

and the following Poincaré-Sobolev inequality holds true:

Theorem 1.2.

There exists a constant C = C(n, p(·)) such that

(6) ||v||p∗(.) 6 C||∇v||p(·) for all v ∈ W 1,p(·)
0 (Ω).

The dual of W
1,p(·)
0 is denoted by W−1,p′(·)(Ω). As usual, here p′(x) :=

p(x)

p(x)− 1
.

We can summarize the definitions of Lebesgue, Lorentz and Zygmund spaces as follows:
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Definition 1.1. (Lorentz-Zygmund spaces)

Let Ω be a space of measure 1, 0 < p, q 6 +∞, −∞ < λ < +∞. Then the Lorentz-Zygmund

space Lp,q (logL)λ consists of all Lebesgue measurable function f on Ω such that :

||f ||p,q;λ =


(∫ 1

0

[
t
1
p (1− Log t)λf∗(t)

]q dt
t

) 1
q

0 < q < +∞

sup
0<t<1

t
1
p (1− Log t)λf∗(t) q = +∞

is finite.

Here f∗ is the decreasing rearrangement of |f |.

We also need the next definition.

Definition 1.2. (of GΓ(p,m;w1, w2)) (see [27])

Let w1, w2 be two weights on (0, 1), m ∈ [1,+∞], 1 6 p < +∞. We assume the following

conditions:

(c1) There exists K12 > 0 such that w2(2t) 6 K12w2(t) ∀t ∈ (1/2, 1).

(c2) The function

∫ t

0

w2(σ)dσ belongs to L
m
p (0, 1;w1).

A generalized Gamma space with double weights is the set

GΓ(p,m;w1, w2) =
{
w : Ω→ IR measurable and

∫ t

0

vp∗(σ)w2(σ)dσ is in L
m
p (0, 1;w1)

}
,

which is a quasi-normed space endowed with the natural quasi-norm:

ρ(v) =
[ ∫ 1

0

w1(t)
(∫ t

0

vp∗(σ)w2(σ)dσ
)m
p
dt
] 1
p
.

If w2 = 1 we simply denote GΓ(p,m;w1, 1) = GΓ(p,m;w1).

We shall also need the following elementary inequalities that can be found in [38], [17].

For p > 2, there exists a constant αp > 0 such that ∀ ξ ∈ IRn, ∀ξ′ ∈ IRn

(7)
(
|ξ|p−2ξ − |ξ′|p−2ξ′, ξ − ξ′

)
IRn

> αp|ξ − ξ′|p.

where in the left hand side the symbol (·, ·)IRn denotes the inner product in IRn, and the

symbol | · | is the associated norm.

A similar relation holds for the case 1 < p < 2, namely, there exists a constant αp > 0 such

that ∀ ξ ∈ IRn, ∀ξ′ ∈ IRn

(8)
(
|ξ|p−2ξ − |ξ′|p−2ξ′, ξ − ξ′

)
IRn

> αp
|ξ − ξ′|2

(|ξ|+ |ξ′|)p−2
.
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2. Abstract results on nonlinear interpolation

We shall need the following results concerning real interpolation with logarithm function (see

[23, 34]).

Let (X0, || · ||0), (X1, || · ||1) be two normed spaces continuously embedded in a Hausdorff

topological vector space, that is, (X0, X1) is a compatible couple. For g ∈ X0 +X1, t > 0, we

shall denote

K(g, t)=̇K(g, t;X0, X1) = inf
g=g0+g1

(
||g0||0 + t||g1||1

)
.

For 0 6 θ 6 1, 1 6 q 6 +∞, α ∈ IR, we define the interpolation space

(X0, X1)θ,q;α =
{
g ∈ X0 +X1, ||g||θ,q;α = ||t−θ−

1
q (1− Log t)αK( g, t)||Lq(0,1) is finite

}
.

Next, we consider four normed spaces X1 ⊂ X0, Y1 ⊂ Y0, and T a non-linear mapping from

Xi into Yi, i = 0, 1 such that:

(1) ||T a− T b||Y0 6 f
(
||a||X0 ; ||b||X0

)
||a− b||αX0

for all (a, b) in X0.

(2) ||T a||Y1 6 g
(
||a||X0

)
||a||βX1

, ∀ a ∈ X1.

Here 0 < α 6 1, β > 0, g is a continuous increasing function, and f is continuous on IR2 and

such that for each σ, f(σ; ·) is increasing.

2.1. Estimating K-functional related to the mapping T .

Lemma 2.1.

Under the above assumptions (1) and (2) on T , let G(σ) = Max
(
g(2σ); f(σ; 2σ)

)
, σ ∈ IR+.

Then for all a ∈ X0, all t > 0 one has

K
(
T a, tβ, Y0, Y1

)
= K(T a, tβ) 6 G(||a||X0)[K(a, t)β +K(a, t)α].

Moreover, if β > α, then

K(T a, tβ) 6 G(||a||X0)(1 + ||a||β−αX0
)K(a, t)α.

Proof: We follow Tartar’s idea [59] (see also [39, 44]). If a ∈ X0 and ε > 0, then there

exist functions a0(ε; ·) and a1(ε, ·) such that a0(ε, t)=̇a0(t) ∈ X0, a1(ε, t)=̇a1(t) ∈ X1 with

a = a0(t) + a1(t) such that

(9) K(a, t) 6 ||a0(t)||X0 + t||a1(t)||X1 6 (1 + ε)K(a, t), ∀ t > 0.
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We set T a = b0(t) + b1(t) with b1(t) = T a1(t). Then

K(T a, tβ) 6 ||b0(t)||Y0 + tβ||b1(t)||Y1 = ||T a− T a1(t)||Y0 + tβ||T a1(t)||Y1

6 tβg
(
||a1(t)||X0

)
||a1(t)||βX1

+ f
(
||a||X0 ; ||a1(t)||X0

)
||a0(t)||αX0

.(10)

Since a ∈ X0, then

(11) K(a, t) 6 ||a||X0 .

From relations (9) and (11), we have

(12) ||a0(t)||X0 6 (1 + ε)||a||X0 ∀ t > 0,

and then

(13) ||a1(t)||X0 6 ||a||X0 + ||a0(t)||X0 6 (2 + ε)||a||X0 .

Therefore relation (10) implies that

(14) K(T a, tβ) 6 Max
(
g
(
||a||X0(2+ε)

)
; f
(
||a||X0 ; (2+ε)||a||X0

))[
||a0(t)||αX0

+tβ||a1(t)||βX1

]
,

and combining this relation (14) with relation (9), and letting ε→ 0, we derive

(15) K(T a, tβ) 6 G(||a||X0)
[
K(a, t)α +K(a, t)β

]
∀ t > 0.

If β > α, then using relation (11), one deduces from (15) that

(16) K(T a, tβ) 6 G(||a||X0)(1 + ||a||β−αX0
)K(a, t)α.

♦

As a particular case we have the following:

Corollary 2.1.1 (of Lemma 2.1). Let X1 ⊂ X0, Y1 ⊂ Y0 be four normed spaces. Assume

that T : X1 → Y1 is globally α-Hölderian, i.e. ∃M1 > 0 such that

||T a− T b||Y1 6M1||a− b||αX1
, 0 < α 6 1,

and T maps X0 into Y0 in the sense that ∃M0 > 0, β > 0

||T a||Y0 6M0||a||βX0
.

Then, ∀ a ∈ X0, ∀ t > 0, one has

K(T a, tβ) 6 Max (M0;M1)
[
K(a, t)β +K(a, t)α

]
.

If α 6 β, then

K(T a, tβ) 6 (1 + ||a||β−αX0
) Max (M0;M1)K(a, t)α.
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Corollary 2.1.2 (of Lemma 2.1). Let X1 ⊂ X0, Y1 ⊂ Y0 be four normed spaces. Assume

that T : Xi → Yi is globally α-Hölderian for i = 0, 1. Then, for all a ∈ X0, b ∈ X1 one has

K(T a− T b; tα) 6 2 Max (M0;M1)K(a− b; t)α,

where Mi denotes the Hölder constants as in Corollary 2.1.1 of Lemma 2.1. Furthermore, if

X1 is dense in X0, then the above equality holds also for all b ∈ X0.

Proof: Let b ∈ X1 and define Sx = T (b+ x)− T b for x ∈ X0. Then

||Sx||Y0 6M0||x||αX0
,

and for all x ∈ X1 and y ∈ X1 we have

||Sx− Sy||Y1 6M1||x− y||αX1
.

We may apply Corollary 2.1.1 of Lemma 2.1 to derive

K(Sx; tα) 6 2 Max (M0;M1)K(x; t)α, ∀x ∈ X0.

Choosing for a ∈ X0, x = a− b and taking into account that S(a− b) = T a− T b, we obtain

the first result. If X1 is dense in X0, we consider a sequence bn ∈ X1 converging to b in X0,

and since

K(bn − b; t) 6 ||bn − b||X0 ,

we have that K(bn − b; t) converges to zero as n goes to ∞. Writing

K(T a− T b; tα) 6 K(T a− T bn; tα) +K(T bn − T b; tα),

and applying the preceding results, one has

K(T a− T bn; tα) +K(T bn − T b; tα) 6 2 Max (M0;M1)
[
K(a− bn; t)α +K(bn − b; t)α

]
.

Letting n go to ∞, we get from the two last formulae that

K(T a− T b; tα) 6 2 Max (M0;M1)K(a− b; t)α,

for all (a, b) ∈ X0 ×X0. ♦
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2.2. Interpolation of Hölderian mappings.

Theorem 2.1.

Let X1 ⊂ X0, Y1 ⊂ Y0, be four normed spaces, T be the mapping satisfying (1) and (2), and

assume that α 6 β. Then, if 0 6 θ 6 1, 1 6 p 6 +∞, for a ∈ (X0, X1)θ,p;λ one has:

T a ∈ (Y0, Y1)θα
β
, p
α

;λα and ||T a||(Y0,Y1)θ α
β
,
p
α ;λα

.
[
(1 + ||a||β−αX0

)G(||a||X0)
]
||a||αθ,p;λ.

Proof: One has from relation (16)

(17) K(T a, tβ) 6 G(||a||X0)(1 + ||a||β−αX0
)K(a, t)α.

Thus, by definition of ‖ · ‖θ,p;λ (see the beginning of this section),

(18) J =

∫ 1

0

t−θp(1− Log t)pλK(T a, tβ)
p
α
dt

t
6
[
(1 + ||a||β−αX0

)G(||a||X0)
] p
α ||a||pθ,p;λ.

Set

J1 =

∫ 1

0

σ−θ
p
β (1− Log (σ))pλK(T a, σ)

p
α
dσ

σ
.

We make the change of variables σ = tβ in the first integral J to deduce:

(19) J =
1

β

∫ 1

0

σ−θ
p
β (1 +

1

β
|Log (σ)|)pλK(T a, σ)

p
α
dσ

σ
.

Hence

c1J1 6 J 6 c2J1 ,

with c1 =


1

β
Min

(
1;

1

β

)pλ
if λ > 0,

1

β
Max

(
1;

1

β

)pλ
if λ < 0,

and c2 =


1

β
Max

(
1;

1

β

)pλ
if λ > 0,

1

β
Min

(
1;

1

β

)pλ
if λ < 0.

We obtained that J1 ' J, and from relations (18), (19) we conclude that

(20) ||T a||θα
β
, p
α

;λα . (1 + ||a||β−αX0
)G(||a||X0)||a||αθ,p;λ.

♦

In view of applications in P.D.E.s, we first have the following:

Theorem 2.2.

Let X1 ⊂ X0, Y1 ⊂ Y0 be four normed spaces. Assume that T : Xi → Yi is globally α-

Hölderian for i = 0, 1. For 0 6 θ 6 1, 1 6 p 6 +∞, if X1 is dense in X0, then T is an

α-Hölderian mapping from (X0, X1)θ,p;λ into (Y0, Y1)θ, p
α

;λα.
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Proof: Let a ∈ (X0, X1)θ,p;λ and b ∈ (X0, X1)θ,p;λ. We have shown in the above Corollary 2.1.2

that

K(T a− T b; tα) 6 2 Max (M0;M1)K(a− b; t)α.

Following the same arguments as in proof of the above Theorem 2.1, we deduce that

(21) ||T a− T b||θ, p
α

;λα 6 c0||a− b||αθ,p;λ.

2.3. Identifications of some interpolation spaces. To obtain similar results as for Propo-

sition 4.4 below with an interpolation process including a functor (as a logarithm function),

we must identify the following interpolation spaces:

(L1, Lm)θ,p2;λ, (L1, Ln,1)θ,p2;λ, (Ls,∞, Lm)θ,p2;λ, (Ls,∞, L∞)θ,p2;λ,

under suitable conditions on s, p2, θ. Here is the general result collecting the necessary

interpolation identification that we shall need for the application. The proof can be essentially

found in ([34]) (see also [1]), however we give below the idea how to prove the statements.

Proposition 2.1. Let 1 6 r < m 6 +∞, 1 6 q1, q2 6 ∞, 1 6 p < +∞, 0 6 θ < 1 and

λ ∈ IR, if θ = 1 then λ < −1

p
, and λ > −1

p
if θ = 0.

||f ||(Lr,q1 ,Lm,q2 )θ,p,λ '



[∫ 1

0

(
t
1−θ
r

+ θ
mf∗(t)(1− Log t)λ

)pdt
t

] 1
p
, 0 < θ < 1;

[ ∫ 1

0

(( ∫ t

0

s
q1
r
−1f∗(s)

q1ds
) 1
q1 (1− Log t)λ

)pdt
t

] 1
p
, θ = 0, q1 < +∞;

[ ∫ 1

0

(
(ess sup

0<s<t
s

1
r f∗(s)

)
(1− Log t)λ

)pdt
t

] 1
p
, θ = 0, q1 = +∞;

[ ∫ 1

0

(( ∫ 1

t

s
q2
m
−1f∗(s)

q2ds
) 1
q2 (1− Log t)λ

)pdt
t

] 1
p
, θ = 1, q2 < +∞;

[ ∫ 1

0

((
ess sup

0<s<t
s

1
mf∗(s))(1− Log t)λ

)pdt
t

]
] 1
p
, θ = 1, q2 = +∞.

Proof: The above proposition can be proved directly without invoking the general framework

in the cited references. Indeed, the main steps are the following two: first, to use Holmsted’s

formula (see [6]) to get an equivalent expression for the K-functional between Lorentz spaces

and then to use suitable Hardy inequalities essentially developed in [5]. ♦

We have several consequences of the above proposition. First, when we compare the definitions
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of Lorentz-Zygmund spaces, GΓ-spaces, and small Lebesgue spaces (see [27] and references

therein for definition and properties), we have:

Proposition 2.2.

Let 1 6 r < m 6∞, λ ∈ IR, 1 6 p2 < +∞.

(1) If 0 < θ < 1, then the interpolation space (Lr;∞;Lm)θ,p2;λ coincides with the Lorentz-

Zygmund space Lmθ,p2(LogL)λ with
1

mθ

=
1− θ
r

+
θ

m
. (L1, Lm)θ,p2;λ coincides with

the Lorentz-Zygmund space L
m′
m′−θ ,p2

(
Log L

)λ
.

(2) If θ = 0, 1 6 q1, q2 6 +∞, then for j = 1, 2, we have

(Lr,q1 , Lm,q2)0,p2;λ = GΓ(qj, p2;w1, w2j),

with w1(t) = (1 − Log (t))λp2t−1, w21(t) = t
q1
r
−1 if q1 < ∞, w22(t) = t

q2
m
−1 if q2 < ∞,

t ∈]0, 1[. The space (L1, Lm)0,p2:λ is the Generalized-Gamma space GΓ(1, p2;w1) where

w(t) = t−1(1− Log t)λp2 (see [27] or [30]).

(3) In particular, for λ > − 1

p2

, we have the link with small Lebesgue spaces as follows:

(a) If 1 < q1 < +∞, L(q1,α1(Ω) = (Lq1 , Lm,q2)0,p1;λ ∀ q2 ∈ [1,+∞], ∀m ∈

]q1,+∞], α1 = q′1(λp2 + 1),
1

q1

+
1

q′1
= 1.

(b) If 1 < q2 < +∞, L(q2,α2(Ω) = (Lr,q1 , Lq2)0,p2;λ with α2 = q′2(λp2 + 1),

1 =
1

q2

+
1

q′2
, ∀ r ∈ [1, q2[, ∀ q1 ∈ [1,+∞].

For the case 0 < θ < 1, we may apply the following duality result (see[27, 44, 12, 57]).

Proposition 2.3.

Let X1 ⊂ X0 two Banach function spaces. Then the associate space of (X0, X1)θ,p;λ with

0 < θ < 1, 1 6 p < +∞, λ ∈ IR, is the space

(X ′1, X
′
0)1−θ,p′;−λ with

1

p
+

1

p′
= 1, where X ′i is the associate space of Xi, i = 0, 1.

As a consequence we have the following

Corollary 2.3.1 (of Proposition 2.3).

Let 1 < m < +∞, 1 < p′ 6 +∞, λ ∈ IR, 0 < θ < 1, m′ =
m

m− 1
. Then (Lm, L∞)θ,p′;λ

is the associate space of (L1, Lm
′
)1−θ,p′;−λ, that is the Lorentz-Zygmund space (up to equiv-

alence of norms) (Lm, L∞)θ,p′;λ = L
m

1−θ ,p
′
(

LogL
)λ
. Moreover, we have (Lm, L∞)θ,p′;λ =

(Lm,∞, L∞)θ,p′;λ.
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Finally, we shall need the next result about a reiteration of Lorentz-Zygmund spaces, which

follows from the Lions-Peetre’s lemma (see [6, 34]).

Proposition 2.4. (see [34])

Let 1 6 p0, q0, p1, q1 6 +∞, p1, 0 < θ < 1, ri ∈ IR. Then(
Lp0,q0

(
LogL

)r0
, Lp1,q1

(
LogL

)r1)
θ,q;r

= Lpθ,q
(

LogL
)rθ

with
1

pθ
=

1− θ
p0

+
θ

p1

and rθ = (1− θ)r0q

q0

+
θr1q

q1

.

Before starting the application of those interpolation formulae, we shall introduce a very

useful lemma inspired by the work of Benilan et al. (see [7], Lemma 4.2). But we state it in

a general framework in view of the applications to a large number of estimates that we shall

use in the next section.

3. A fundamental lemma for estimates in Marcinkiewicz space

Lemma 3.1. Fundamental lemma of Benilan type

Let ν be a non negative Borel measure and h : Ω → IR+, g : Ω → IR+, be two ν-measurable

functions. Then, ∀λ > 0, ∀ k > 0, we have

ν
{
h > λ

}
6

1

λ

∫
{g6k}

hdν + ν{g > k}.

Proof: Since t→ ν{h > t} is non decreasing, ∀λ > 0, we have

ν{h > λ} 6
1

λ

∫ λ

0

ν{h > t}dt

=
1

λ

∫ λ

0

(
ν{h > t} − ν{h > t, g > k}

)
dt+

1

λ

∫ λ

0

ν{f > t, g > k}dt.

We have ν{h > t, g > k} 6 ν{g > k} and

ν{h > t} − ν{h > t : g > k} = ν{h > t : g 6 k}.

Therefore, we obtain

ν{h > λ} 6 1

λ

∫ +∞

0

ν{h > t : g 6 k}dt+ ν{g > k}.

By the Cavalieri’s principle, one has∫ +∞

0

ν{h > t : g 6 k}dt =

∫
{g6k}

hdν.

With those two last inequalities, we get the result. ♦

Besides the applications that we shall give in the next section, we recall some estimates that
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we have already used in a previous work ([18]). Let us recall that if ω is an integrable weight

function on Ω, the weighted Marcinkiewicz space is defined by

Lq,∞(Ω, ω) =

{
v : Ω→ IR measurable s.t. sup

λ>0
λq
∫
|v|>λ

ω(x)dx < +∞
}
, 0 < q < +∞.

If ω = 1, Lq,∞(Ω, 1) is the same as the Lorentz space Lq,∞(Ω) defined in the first section.

Theorem 3.1. A generalized Benilan type result

Let ω be an integrable weight function on Ω, 1 6 p < +∞, and let u ∈ W 1,1
loc (Ω) be such that,

for a constant M > 0, we have

∫
Ω

|∇Tk(u)|pω(x)dx+

∫
Ω

|Tk(u)|pω(x)dx 6Mk, ∀ k > 0,

with Tk(t) = Min (|t|; k)sign(t), t ∈ IR.

Assume furthermore that we have a continuous Sobolev embedding,

W 1Lp(Ω, ω) ⊂> Lp
∗
(Ω, ω) for some p∗ > p.

Then, one has: ∫
|∇u|>λ

ωdx 6 cM
p∗

p∗+p′ λ
− pp∗
p∗+p′ ∀λ > 0,

where c > 0 is a constant depending only on p, Ω, p∗, p′. Hence |∇u| ∈ Lq,∞(Ω, ω), with q =
pp∗

p∗ + p′
. If q > 1, then u ∈ W 1Lr(Ω, ω), 1 6 r < q.

Proof: For a measurable set E ⊂ Ω, we set νE =

∫
E

ω(x)dx and we apply the above funda-

mental Lemma 3.1 to derive that for all λ > 0, ∀ k > 0,

(22) ν{|∇u|p > λ} 6 1

λ

∫
Ω

|∇Tk(u)|pωdx+ ν{|u| > k|}.

By the first assumption of the theorem, we get, for all k > 0 and λ > 0, that

(23) ν{|∇u|p > λ} 6 k

λ
M + ν{|u| > k}.

Following Benilan et al. [7], we have {|u| > ε} =
{
|Tk(u)| > ε

}
for ε < k. Therefore

(24) ν{|u| > ε} 6 1

εp∗

∫
Ω

|Tk(u)|p∗ωdx.

Using Sobolev’s inequality, we have

(25) ν{|u| > ε} 6 1

εp∗
cs

[∫
Ω

|∇Tk(u)|pωdx+

∫
Ω

|Tk(u)|pωdx
] p∗
p

6
1

εp∗
csk

p∗
p .

As ε→ k, we have, for all k > 0,

(26) ν{|u| > k} =

∫
|u|>k

ω(x)dx 6 csk
− p
∗
p′ ,
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where cs is the Sobolev’s constant. Combining relations (23) and (26), one has

(27) ν{|∇u|p > λ} 6 Inf
k>0

{
M

λ
k + csk

− p∗
p′

}
.

Computing the infimum, we have ∀λ > 0

(28) ν{|∇u|p > λ} .M
p∗

p∗+p′ λ
− p∗
p∗+p′ ,

and this implies the result. ♦

Here are some weighted spaces in which we have a Sobolev embedding (see [36, 56]).

Proposition 3.1.

Assume that Ω is a bounded open Lipschitz set of IRn. Let α > 0,and let ω be one of the

following weights

• ω(x) = dist (x; ∂Ω)α = δ(x)α,

• ω(x) = dist (x;x0)α, x0 ∈ ∂Ω.

For 1 6 p < n+ α, we have p∗ =
(n+ α)p

n+ α− p
and

[∫
Ω

|v|p∗ωdx
] 1
p∗

6 c

[(∫
Ω

|v|pωdx
) 1

p

+

(∫
Ω

|∇v|pωdx
) 1

p

]
.

As a consequence of the above Theorem and Proposition 3.1, here is a proposition that we

have already stated and used in [18] (see Proposition 13 therein).

Proposition 3.2.

Let v ∈ L1(Ω, δα), and α ∈ [ 0, 1 ]. Assume that there exists a constant c0 > 0 such that for

all k > 0

Tk(v) := Min (|v|; k) sign (v) ∈ W 1L2(Ω, δα),

and

(29)

∫
Ω

|∇Tk(v)|2δαdx+

∫
Ω

|Tk(v)|2δαdx 6 c0k.

Then there exists a constant c, depending continuously on c0 > 0, such that for all λ > 0∫
{x:|∇v|(x)>λ}

δα(x)dx 6
c

λ1+ 1
n+α−1

.

In particular, if (vj) is a sequence converging weakly in L1(Ω) to a function v, satisfying the

inequality (29) and such that∫
Ω

|∇Tk(vj)|2δαdx 6 c0k ∀j, ∀k,
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then (vj) converges to v weakly in W 1,q(Ω′) for all q ∈
[
1,

n+ α

n+ α− 1

[
and all Ω′ ⊂⊂ Ω, and

there exists a subsequence (that we call still (vj)) such that vj(x)→ v(x) a.e. in Ω.

4. Application to the regularity of the solution of a p-Laplacian

Let Ω be a bounded set of IRn. Let us consider f ∈ L1(Ω) ∩W−1,p′(Ω),
1

p
+

1

p′
= 1, 1 < p <

+∞, and V a Caratheodory function from Ω× IR into IR such that

(H1): for all σ ∈ IR, x ∈ Ω→ V (x;σ) is in L∞(Ω).

(H2): for a.e. x ∈ Ω, σ ∈ IR→ V (x;σ) is continuous and non decreasing with V (x; 0) =

0.

Using the Leray-Lions’ method for monotone operators (see Lions’s book [37]) or the usual

fixed point theorem of Leray-Schauder’s type (see Gilbarg -Trudinger [33]) we have:

Proposition 4.1.

Let f be in L1(Ω) ∩W−1,p′(Ω). Then there exists a unique element u ∈ W 1,p
0 (Ω) such that

(30)

∫
Ω

ϕ(x)V (x;u)dx+

∫
Ω

|∇u|p−2∇u · ∇ϕdx =

∫
Ω

fϕ dx ∀ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

We call such solution a weak solution of the Dirichlet equation −∆pu+ V (x;u) = f .

Remark 4.1. (on the above existence and uniqueness)

If p > n, then L1(Ω) ⊂ W−1,p′(Ω). If p 6 n, then the dual space L(p∗)′(Ω) ⊂ W−1,p′(Ω)

whenever p∗ =
np

n− p
if p < n, and p∗ is any finite number if p = n.

Therefore, the above result can be applied for these cases. In the paragraph concerning the

equation with variable exponents, we give the idea on how to prove the above proposition.

We can define a nonlinear mapping:

T : L1(Ω) ∩W−1,p′(Ω) −→ [Lp(Ω)]n

f 7−→ T f = ∇u.

We shall need sometimes the following additional growth assumption for V.

(H3): There exist m1 ∈
[
p− 1,m1

[
, m1 =


(p− 1)

(
1 +

1

n− p

)
if p < n

< +∞ if p > n,

and a constant c > 0 such that

|V (x, σ)| 6 c|σ|m1 ∀ σ ∈ IR, a.e. x ∈ Ω.
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We want to extend the above mapping over all L1(Ω). When p = n and f ∈ L1(Ω), the

Iwaniec-Sbordone’s method ensures the existence and uniqueness of a weak solution that is

under the above formulation (30) or even in the sense of distribution, see for instance ([31],

[43], [24]). So the above mapping is well defined on L1(Ω).

When p < n and the data f is only in L1(Ω), the formulation by equation (30) cannot ensure

the uniqueness of the solution. Here it is an equivalent formulation which summarizes various

definitions introduced by different authors (see for instance [21, 7, 9, 10, 53, 52, 13]). We

consider again the usual truncation

Tk : IR→ IR defined by Tk(σ) = {|k + σ| − |k − σ|}/2,

and we define as in [50, 53] (see also [7]), the following T -space or T -set:

S1,p
0 =

{
v : Ω→ IR measurable such that tan−1(v) ∈ W 1,1

0 (Ω),

and ∀ k > 0, Tk(v) ∈ W 1,p
0 (Ω), sup

k>0
k−

1
p ||∇Tk(v)||Lp(Ω) = κ < +∞

}
.

Definition 4.1 (of an entropic-renormalized solution).

We will say that a function u defined on Ω is an entropic-renormalized solution associated to

the Dirichlet problem

(31) −∆pu+ V (x;u) = f ∈ L1(Ω) u = 0 on ∂Ω

if

(1) u ∈ S1,p
0 (Ω), V (·, u) ∈ L1(Ω).

(2) ∀ η ∈ W 1,r(Ω), r > n, ∀ϕ ∈ W 1,p
0 (Ω)∩L∞(Ω) and all B ∈ W 1,∞(IR) with B(0) = 0,

B′(σ) = 0 for all σ such |σ| > σ0 > 0, one has:

(32)

∫
Ω

|∇u|p−2∇u · ∇
(
ηB(u− ϕ)

)
dx+

∫
Ω

V (x;u)ηB(u− ϕ)dx =

∫
Ω

fηB(u− ϕ)dx.

If f ∈ Lp′(Ω) the above formulation (32) is equivalent to the formulation (30) (i.e. a weak

solution is an entropic-renormalized solution); see [50] or [43] for the case p = n. It has been

proved in the above references (see [7, 54, 52, 9, 13] ) that we have existence and uniqueness

of an entropic-renormalized solution.

Theorem 4.1.

Let f ∈ L1(Ω) and assume (H1) and (H2). Then there exists a unique entropic-renormalized

solution of equation (31). Moreover, if the sequence (fj) converges to f in L1(Ω), then the

sequence (∇uj(x)) converges to ∇u(x) almost everywhere in Ω for a subsequence still denoted
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by (uj). When p > 2− 1

n
, the solution u ∈ W 1,1

0 (Ω).

Comments on the proofs of Theorem 4.1 and Theorem 4.2

• For any v ∈ S1,p
0 (Ω), the gradient of v exists a.e. in the sense that if we denote by

{~e1, . . . , ~en

}
the canonical basis of IRn, then the following limit exists almost every-

where in Ω

lim
t→0

v(x+ t~ei)− v(x)

t
=̇
∂v

∂xi
(x)

and

DB(v)(x) = B′
(
v(x)

)
Dv(x), whenever B ∈ W 1,∞(IR).

This result is only given in [52] (see also [53]).

• Let f1 ∈ L1(Ω), f2 ∈ L∞(Ω), u1 be the entropic-renormalized solution associated

to f1 and u2 be the weak solution of equation (30) associated to f2. Then, choosing

η = 1, B = tan−1(Tk), for k > 0, ϕ = u2 is in W 1,p
0 (Ω) ∩ L∞(Ω). One has, dropping

the non negative term,

(33)

∫
Ω

(
|∇u1|p−2∇u1 − |∇u2|p−2∇u2

)
· ∇B(u1 − u2)dx 6

π

2

∫
Ω

|f1 − f2|dx.

The relation (33) implies the uniqueness of the entropic-renormalized solution for all

p ∈]1, n[.

When p > 2, we can have more inequalities for u1−u2. Indeed, we can use the strong

coercivity of the p-Laplacian, that is inequality (7) (or see below (43)), and we let

k → +∞ to obtain:∫
Ω

|∇(u1 − u2)|p

1 + |u1 − u2|2
dx 6

π

2

∫
Ω

|f1 − f2|dx.

From this relation, we have for all 1 6 q <
n

n− 1
(p− 1)∫

Ω

|∇(u1 − u2)|q 6 c||f1 − f2||
q
p

L1

[
1 +

(∫
Ω

|∇(u1 − u2)|qdx
)m2

]
with m2 = q∗

(
1

q
− 1

p

)
and

1

q∗
=

1

q
− 1

n
if p < n, so that m2 < 1; and q∗ is any

number so that m2 < 1 if p > n.

Hence, using Young’s inequality,

(34)

(∫
Ω

|∇(u1 − u2)|q
)1/q

6 c
[
||f1 − f2||β1L1 + ||f1 − f2||β2L1

]
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where βi, i = 1, 2, c depend only p, n, Ω, βi > 0. This is the method used in [49, 51].

The above inequality gives a stability and uniqueness result.

The technique developed by Benilan et al. [7] gives a more precise result than the

above relation (34). Indeed the same arguments as for having (33) with B = Tk, leads

to:

(35)

∫
Ω

|∇Tk(u1 − u2)|pdx 6 k

∫
Ω

|f1 − f2|dx, ∀ k > 0.

If f1 6= f2, we set w =
u1 − u2

||f1 − f2||
1
p−1

L1

. λ = k||f1 − f2||
− 1
p−1

L1 and we deduce that

(36)

∫
Ω

|∇Tλ(w)|pdx 6 λ.

From this inequality, Benilan’s technique (see [7] or the above Theorem 3.1) implies

that

(37) ||∇w||Ln′(p−1),∞ 6 c(p,Ω).

This implies the second statement of the Theorem 4.2. Another proof of this regularity

result (37) is in [55]. ♦

Proposition 4.2.

Let u be the solution of equation (31) with f being in Lp
′
(Ω).

(1) If f ∈ L
n
p

; 1
p−1 (Ω), p 6 n, then u ∈ L∞(Ω) and ||u||L∞ 6 c||f ||

1
p−1

L
n
p ; 1
p−1 (Ω)

,

if f ∈ L1; 1
p−1 (Ω), p > n, then u ∈ L∞(Ω) and ||u||∞ 6 c||f ||

1
p−1

L
1; 1
p−1 (Ω)

.

(2) If we assume (H3) and f ∈ Ln,1(Ω), then

∇u ∈ L∞ and ||∇u||L∞ 6 c
(

1 + ||f ||
m1+1−p
(p−1)2

L1

)
||f ||

1
p−1

Ln,1(Ω).

All the constants denoted by c depend only on p, Ω and V .

This proposition gathers well known results (see for instance [14], [26] or [47] page 125 for

statement (1), and [14, 15, 55] for statement (2)). The growth of the gradient in Proposition

4.2 comes from the following Lemmas.

Lemma 4.1.

Assume (H3). Let m3 =
n

n− p
(p− 1) if 1 < p < n, or m3 be any finite number in [nm1,+∞[

if p ≥ n, and let u ∈ L∞(Ω), then

||V (·;u(·))||
1
p−1

Ln,1 . ||u||∞ · ||u||
m1+1−p
p−1

Lm3,1
.
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Proof: One has from (H3)

||V (·;u(·))||
1
p−1

Ln,1 6 c

[∫ |Ω|
0

t
1
n |u|m1

∗ (t)
dt

t

] 1
p−1

. ||u||∞

[∫ |Ω|
0

t
1
n |u|m1+1−p

∗ (t)
dt

t

] 1
p−1

(38) . ||u||∞||u||
m1+1−p
p−1

Ln(m1+1−p),m1+1−p .

If 1 < p < n, one has n(m1 + 1 − p) < n

n− p
(p − 1) = m3 since m1 < (p − 1)

[
1 +

1

n− p

]
,

n(m1 + 1− p) < m3 if p > n. Therefore, the last inequality implies the result. ♦

Lemma 4.2.

Assume (H3) and let m3 be as in Lemma 4.1. If f ∈ Ln,1(Ω) and u is a weak solution of

equation (30), then

||V (·;u(·))||
1
p−1

Ln,1 . ||f ||
1
p−1

Ln,1 · ||f ||
m1+1−p
p−1

L1 .

Proof: By statement (1) of Proposition 4.2, u is bounded and ||u||∞ . ||f ||
1
p−1

Ln,1 . We have

(39) ||u||Ln′(p−1)∗,1 6 c||∇u||Ln′(p−1),∞

by Sobolev-Poincaré’s inequality (see [47]), and

(40) ||∇u||Ln′(p−1),∞ . ||f ||
1
p−1

L1

by Theorem 4.1. From (39) and (40), we have

(41) ||u||Ln′(p−1)∗,1 . ||f ||
1
p−1

L1 .

Since n′(p− 1)∗ = m3, from Lemma 4.1 we derive the result. ♦

Statement (2) of Proposition 4.2 is then a consequence of the above Lemmas since −∆pu =

f − V (·;u) ∈ Ln,1 if u is a weak solution of (30) for f ∈ Ln,1(Ω). The Cianchi-Maz’ja’s result

implies

(42) ||∇u||L∞ . ||f − V (·;u)||
1
p−1

Ln,1 . ||f ||
1
p−1

Ln,1 + ||V (·;u)||
1
p−1

Ln,1 .

This inequality (42) and Lemma 4.2 implies the estimate (2) in Proposition 4.2.
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4.1. The Hölderian mappings for the case p > 2.

We start with the Hölder property in the case 2 6 p < n.

Theorem 4.2.

If p > 2, fi ∈ L1(Ω), i = 1, 2 and if ui, i = 1, 2 are the corresponding entropic-renormalized

solution,

(1)

∫
Ω

∣∣∣∇Tk(u1 − u2)
∣∣∣pdx 6 k

∫
Ω

|f1 − f2|dx.

(2) ui ∈ W 1,1
0 (Ω), and moreover

||∇(u1 − u2)||Ln′(p−1),∞(Ω) 6 c||f1 − f2||
1
p−1

L1(Ω),

where c is a constant depending only on the data p, Ω and V, n′ =
n

n− 1
.

Proof: We use the stability result. Indeed, let f1j = Tj(f1) (resp. f2j = Tj(f2)). Then,

uij i = 1, 2 associated to fij are solutions of (30). We note first that if u1 is an entropic-

renormalized solution associated to f1 and f1j = Tj(f1) ∈ L∞(Ω), then the weak solution u1j

of equation (30) satisfies

||∇u1j −∇u1||Ln′(p−1),∞(Ω) −−−−→
j→+∞

0.

Therefore using relation (7) and ϕ = Tk(u1j−u2j) as a test function in relation (30), we derive

the statement (1) of the theorem using the convergences for each ∇ui. While for statement

(2), we may apply Theorem 3.1 with u = u1 − u2 ∈ W 1,1
loc (Ω) and ω = 1. ♦

As consequence of this theorem, we have the following Corollary which proves Theorem 4.1.

Corollary 4.2.1 (of Theorem 4.2).

Under the assumptions (H1) and (H2), we extend the mapping T :
L1(Ω) −→

[
Ln
′(p−1),∞(Ω)

]n
f 7−→ T f

with T f = ∇u, where u is the unique entropic-renormalized solution of the Dirichlet equation

(31). Then, for p > 2, there exists a constant c(p,Ω) > 0 independent of V such that

||T f1 − T f2||Ln′(p−1),∞ 6 c(p,Ω)||f1 − f2||
1
p−1

L1(Ω).

We derive this result from the statement (2) of Theorem 4.2. This stability implies the desired

result.

Lemma 4.3.

Assume (H1) and (H2). If p > 2, then the preceding mapping T is
1

p− 1
-Hölderian from

L(p∗)′ into [Lp(Ω)]n with
1

(p∗)′
=

1

p′
+

1

n
, p∗ =

np

n− p
, 1 < p < n, p′ is the conjugate of p.
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Proof: For p > 2, we recall that there exists a constant αp > 0 such that ∀ ξ ∈ IRn, ∀ξ′ ∈ IRn

(43)
(
|ξ|p−2ξ − |ξ′|p−2ξ′, ξ − ξ′

)
IRn

> αp|ξ − ξ′|p.

Therefore, for two data f1 and f2 in Lp
′
(Ω), dropping the non negative term, we have

cp

∫
Ω

|T f1 − T f2|pdx 6
∫

Ω

(
|∇u1|p−2∇u1 − |∇u2|p−2∇u2,∇(u1 − u2)

)
dx

6
∫

Ω

(f1 − f2)(u1 − u2)dx (by Poincaré-Sobolev inequality)

6 c1p||f1 − f2||L(p∗)′ ||T f1 − T f2||Lp ,

so that

||T f1 − T f2||Lp(Ω) 6 c2p||f1 − f2||
1
p−1

L(p∗)′ (Ω)
.

This implies the result using a density argument. ♦

To apply the abstract results given in the second section for interpolation spaces, we need

to use some well-known results concerning some identification. The first one can be deduced

from the famous reiteration process of Lions-Peetre or from Proposition 2.1.

Proposition 4.3.

For all r ∈ [1,+∞], 1 6 m 6 +∞, 1 < q 6 +∞, m < k < q, we have(
Lm(Ω), Lq(Ω)

)
θ,r;0

= Lk,r(Ω) with
1

k
=

1− θ
m

+
θ

q
.

Notice that the interpolation space (X0, X1)θ,r;0 is the same as Peetre interpolation space

(X0, X1)θ,r since X1 ⊂ X0.

Proposition 4.4.

Assume (H1) and (H2). Let p∗ =
np

n− p
with 2 6 p < n, (p∗)′ its conjugate,

1 6 k 6 (p∗)′ =
np

np− n+ p
, p∗ is any finite number if p > n, r ∈ [1,+∞]. Then

||T f1 − T f2||Lk∗(p−1),r(p−1) 6 c||f1 − f2||
1
p−1

Lk,r
,

for f1, f2 in Lk,r(Ω), with k∗ =
kn

n− k
if k < n and any finite number if k > n.

In particular if f ∈ Lk,r(Ω) then the gradient of the solution u of (32) belongs to [Lk
∗(p−1),r(p−1)(Ω)]n.

Proof: The mapping T is
1

p− 1
-Hölderian from L1(Ω) into [Ln

′(p−1),∞(Ω)]n and from Lq
′
(Ω)

into [Lp(Ω)]n with q′ = (p∗)′. Moreover, we have Lk,r(Ω) = (L1, Lq
′
)θ,r with θ = p∗

(
1 − 1

k

)
and
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Lk
∗(p−1),r(p−1) =

(
Ln
′(p−1),∞, Lp

)
θ,r(p−1)

. From the abstract result Theorem 2.2, we have for

f1, f2 in Lk,r(Ω):

||T f1 − T f2||θ,r(p−1);0 . ||f1 − f2||
1
p−1

θ,r .

Noticing that bounded functions are dense in Lk,r(Ω), we get the result. ♦

Proposition 4.4 improves previous known results considering the case k = r: in fact, the usual

estimate is only obtained in
[
Lk
∗(p−1)(Ω)

]n
(see for instance [14]).

Let us apply now those identifications of the interpolation spaces to obtain precise regularity

of the gradient of an entropic-renormalized solution.

Theorem 4.3.

Assume (H1) and (H2) and let m =
np

(n+ 1)p− n
if 2 6 p < n and m ∈ [1,+∞[ if p >

n, 1 6 p2 < +∞, λ ∈ IR, 0 < θ < 1. Then, the mapping T is
1

p− 1
-Hölderian from

L
m′
m′−θ ,p2

(
LogL

)λ
into Lpθ,p2(p−1)

(
LogL

) λ
p−1

with

1

pθ
=

(1− θ)(n− 1)

n(p− 1)
+
θ

p
and m′ =

m

m− 1
.

If 2 6 p < n and θ = 0, the mapping T is
1

p− 1
−Hölderian from GΓ(1, p; t−1(1 − Logt)λp)

into (Ln
′(p−1),∞(Ω), Lp(Ω))0,p(p−1);λ/(p−1). This latter space has norm equivalent to

(∗)

‖f‖(Ln
′(p−1),∞(Ω),Lp(Ω))0,p(p−1);λ/(p−1)

≈

[∫ 1

0

(
sup

0<s<tσ
s
p′
pn′ f∗(s)(1− Logt)

λ
p−1

)p(p−1)
dt

t

] 1
p(p−1)

,

where 1/σ = p′/(pn′)− 1/p.

In the case θ = 1, the mapping T is
1

p− 1
−Hölderian from (L1(Ω), L(p∗)′(Ω))1,p;λ into

(Ln
′(p−1),∞(Ω), Lp(Ω))1,p/α;λα. The first space has (quasi)norm[∫ 1

0

((∫ 1

t

f∗(s)
(p∗)′ds

) 1
(p∗)′

(1− log t)λ

)p

dt

t

] 1
p

while the second has (quasi)norm∫ 1

0

((∫ 1

t

f∗(s)
pds

) 1
p

(1− log t)λα

) p
α

dt

t


α
p

.

Here α = 1
p−1

.
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Proof: Since T is
1

p− 1
-Hölderian from L1 into [Ln

′(p−1),∞(Ω)]n and Lm into [Lp(Ω)]n, and

since smooth functions are dense in Lorentz-Zygmund space Lp1,p2(LogL)γ, 1 6 p1, p2 < +∞

and (L1, Lm)θ,p2;λ = L
m′
m′−θ ,p2(LogL)λ according to Proposition 2.2, we deduce from Theorem

2.2 that T maps (L1, Lm)θ,p2;λ into
(
Ln
′(p−1), Lp

)
θ,
p2
α

;λα
with α =

1

p− 1
.

The identification of the last space given by Corollary 2.3.1 of Proposition 2.3 proves the

results.

Let 2 6 p < n and θ = 0. First of all, as before, the mapping T is
1

p− 1
−Hölderian from

L1(Ω) into [Ln
′(p−1),∞(Ω)]n. On the other hand, in this case, by Lemma 4.3 we know that the

mapping T is
1

p− 1
−Hölderian from L(p∗)′(Ω) into [Lp(Ω)]n, where as usual (p∗)′ = np/(np−

n + p). Noticing that by Proposition 2.2, (L1, L(p∗)′(Ω))0,p;λ = GΓ(1, p; t−1(1 − Logt)λp)

and that L(p∗)′(Ω) is dense therein, we can therefore apply Theorem 2.2 and get that T

is
1

p− 1
−Hölderian from (L1(Ω), L(p∗)′(Ω))0,p;λ into (Ln

′(p−1),∞(Ω), Lp(Ω))0,p/α;λα. Then the

assertion follows, because the domain space and the target space have been identified in

Proposition 2.1. The same argument holds for θ = 1 . ♦

To obtain boundedness of the solution in a more general situation, we need to assume (H3).

We have the following:

Theorem 4.4.

Assume (H1), (H2) and (H3). Let 0 6 θ < 1, 1 < p2 < +∞, λ ∈ IR, f ∈ L
n′
n′−θ , p2(LogL)λ

n′ =
n

n− 1
, 0 < θ < 1 and f ∈ GΓ(1, p2;w2) with w2(t) = t−1

(
1− Log t

)λp2
if θ = 0.

Then the entropic-renormalized solution u of the Dirichlet equation (32) has its gradient in

L
n(p−1)

(1−θ)(n−1)
, p2(p−1)

(
LogL

) λ
p−1

.

Proof: Since T is
1

p− 1
-Hölderian from L1 into [Ln

′(p−1,∞(Ω)]n and T , by Proposition 4.2,

is bounded from Ln,1(Ω) into L∞(Ω), then, following Theorem 2.1, T is bounded from

(L1, Ln)θ,p2;λ into
(
Ln
′(p−1), L∞

)
θ,p2(p−1); λ

p−1

. With the identification of those interpolation

spaces we obtain the result. ♦

4.2. Few results on the case 1 < p < 2.

Some of the above results remain true in the case 1 < p < 2. The fundamental changes

concern the Hölder properties than can exist but are not sharp as for the case p > 2, and the

Hölder constant appearing depend on the data. Here is an example.
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Theorem 4.5. (local Lipschitz contraction when 1 < p < 2)

Let 1 < p < 2, p∗ =
np

n− p
, n > 2, (p∗)′ =

np

np+ p− n
its conjugate and f1 (resp f2) in

L(p∗)′(Ω). Then, for the weak solution u (resp. v) of (30), say −∆pu+V (x;u) = f1, whenever

V satisfies (H1) and (H2), one has:

(1) ||∇u||Lp 6 c||f1||
1
p−1

L(p∗)′ , ||∇v||Lp 6 c||f2||
1
p−1

L(p∗)′ .

(2) ||∇(u− v)||Lp 6 c
(
||∇u||Lp + ||∇v||Lp

)2−p
||f1 − f2||L(p∗)′ .

Here the constant c depends only on p and Ω.

Proof: Since we have stability result, we may assume that f1 and f2 are bounded. Arguing

as before, one has, using Poincaré Sobolev inequality, that∫
Ω

|∇u|pdx+

∫
Ω

uV (x;u)dx 6 ||f1||L(p∗)′ 6 c||∇u||Lp · ||f1||L(p∗)′ .

Dropping the non negative term

∫
Ω

uV (x, u)dx > 0, we obtain (1).

As to the second statement, we use the following inequality (see [38] or [17]) concerning the

p-Laplacian, namely, setting â(∇u) = |∇u|p−2∇u, we have

(44)
(
â(∇u)− â(∇v)

)
· ∇(u− v) > α

|∇(u− v)|2(
|∇u|+ |∇v|

)2−p a.e. in Ω.

Therefore, making the differences between the two equations and dropping non negative terms

containing V , we have from relation (44)

(45)

∫
Ω

|∇(u− v)|2

(|∇u|+ |∇v|)2−pdx 6 c||f − g||L(p∗)′ ||∇(u− v)||Lp .

We have used the Poincaré-Sobolev inequality.

Now we estimate

∫
Ω

|∇(u−v)|pdx. Adding the term
(
|∇u|+|∇v|

)(p−2) p
2
, the Hölder inequality

yields∫
Ω

|∇(u− v)|pdx 6

(∫
Ω

|∇(u− v)|2
(
|∇u|+ |∇v|

)p−2

dx

) p
2
[∫

Ω

(
|∇u|+∇v|

)p
dx

]1− p
2

,

and with the help of relation (45), we have

||∇(u− v)||Lp . ||f1 − f2||L(p∗)′

(
||∇u||Lp + ||∇v||Lp

)2−p
.

♦
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Corollary 4.5.1 (of Theorem 4.5).

Under the same assumptions as in Theorem 4.5, there exists a constant c depending only on

p and Ω such that

||∇(u− v)||Lp 6 c
(
||f1||

1
p−1

L(p∗)′ + ||f2||
1
p−1

L(p∗)′

)
||f1 − f2||L(p∗)′ .

In particular, the mapping T is locally Lipschitz from L(p∗)′(Ω) into [Lp(Ω)]n with
1

(p∗)′
=

1− 1

p
+

1

n
.

We can have, therefore, the following weaker version of Proposition 4.4 when 1 < p < 2.

Proposition 4.5.

Assume (H1), (H2) and (H3). If 1 < p < 2, (p∗)′ < k < n, r ∈ [1,+∞], then the non-linear

mapping T is bounded from Lk,r(Ω) into Lk1,r(Ω), k1 =
1

1− θ(p− 1)
, with θ = p∗(1− 1

k
).

Proof: Following Corollary 4.5.1 of Theorem 4.5 and Proposition 4.2 , the hypotheses of

Theorem 2.1 are valid for T with X0 = L(p∗)′(Ω), X1 = Ln,1(Ω), λ = 0, Y0 = [Lp(Ω)]n,

Y1 = [L∞(Ω)]n, α = 1 and β =
1

p− 1
. According to Theorem 2.1, T is then a locally bounded

mapping from (X0, X1)θ,r into (Y0, Y1)θ(p−1),r with θ ∈ [0, 1] such that
1

k
=

1− θ
(p∗)′

+
θ

n
. There-

fore (X0, X1)θ,r = Lk,r(Ω) and
(
Y0, Y1

)
θ(p−1),r

= Lk1,r(Ω) with k1 =
1

1− θ(p− 1)
. ♦

Remark 4.2.

a.) One can make precise the bound for T locally, according to Theorem 2.1, Corollary

4.5.1 of Theorem 4.5, and Proposition 4.2.

b.) If p > n, then the mapping T is Lipschitz from L1(Ω) into [Lp(Ω)]n: this is a

consequence of the Poincaré-Sobolev inequality that we have recalled in Proposition

4.2. Therefore, in view of the Cianchi-Maz’ja’s regularity result, the application T is

bounded from (L1, Ln,1)θ,q;λ into [(Lp, L∞)θ,q;λ]
n.

c.) The list of applications of the above applications is not exhaustive, the reader might

derive more results combining those abstract theorems and propositions.

d.) For other results concerning equations with data in Lorentz spaces, see e.g. [25, 35].
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5. Application of the interpolation for the regularity of the solution

of the anisotropic equation

5.1. Preliminary results on anisotropic equations.

We want to provide similar results as before for the solution of

(46)

−∆~pu+ V (x;u) = f in Ω

u = 0 on ∂Ω.

Here ∆~pu = −
n∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

)
, ~p = (p1, . . . , pn), 1 < pi < +∞, ~p′ = (p

′
1, . . . , p

′
n),

where p
′
i is the conjugate of pi.

The main differences reside in the exponent appearing in different directions of the space IRn.

Moreover, the estimates concern directly the derivatives in each direction of the IRn-space.

Let us recall, from the Introduction, that the real number p is defined as
1

p
=

1

n

n∑
i=1

1

pi
. When

n∑
i=1

1

pi
> 1 (say p < n) , we set p∗ =

np

n− p
. We will focus first on the case p < n for having

the Hölderian property of the mapping T . We set

W 1,~p
0 (Ω) =

{
ϕ ∈ W 1,1

0 (Ω) such that ∂iϕ ∈ Lpi(Ω) , i = 1, . . . n
}

S1,~p
0 =

{
v : Ω→ IR measurable s.t. tan−1(v) ∈ W 1,1

0 (Ω)

and Tk(v) ∈ W 1,~p
0 (Ω) with sup

k>0

[
Max
16i6n

k
1
pi ||∂iTk(v)||Lpi < +∞

]}
.

The definition of an entropic-renormalized solution is similar to Definition 4.1; we replace the

operator and the spaces by the above ones.

Definition 5.1. entropic renormalized solution for anisotropic equation

For ξ = (ξ1, . . . , ξn) ∈ IRn we consider the vector field â~p(ξ) =
(
|ξ1|p1−2ξ1, . . . , |ξn|pn−2ξn

)
.

We will say that a function u defined on Ω is an entropic-renormalized solution associated to

the Dirichlet problem

(47) −∆~pu+ V (x;u) = f ∈ L1(Ω) u = 0 on ∂Ω

if

(1) u ∈ S1,~p
0 (Ω), V (·, u) ∈ L1(Ω).

(2) ∀ η ∈ W 1,∞(Ω), ,∀ϕ ∈ W 1,~p
0 (Ω) ∩ L∞(Ω) and all B ∈ W 1,∞(IR) with B(0) = 0

B′(σ) = 0 for all σ such that |σ| > σ0 > 0, one has:
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(48)

∫
Ω

â~p(∇u).∇
(
ηB(u− ϕ)

)
dx+

∫
Ω

V (x;u)ηB(u− ϕ)dx =

∫
Ω

fηB(u− ϕ)dx.

Concerning the existence and uniqueness, let p∗ be the number defined for the validity of the

Poincaré-Sobolev inequality: ∃c > 0 such that

∀v ∈ W 1,~p
0 (Ω)

(∫
Ω

|v|p∗(x)dx

) 1
p∗

6 c

(
n∑
i=1

∫
Ω

|∂iv|pidx

)1

p
.

Considering the main operator

Au = −div
(
â~p(∇u)

)
+ V (·, u)

which is strongly monotonic from W 1,~p
0 (Ω) into its dual W−1,~p′(Ω), for f ∈ L1(Ω)∩W−1,~p′(Ω),

the usual well-known Leray-Lions method or the Leray-Schauder fixed point can be used for

having the existence and uniqueness. Moreover, if f ∈ L∞(Ω), the maximum principle holds

true, using for instance the rearrangement technique (see for instance [3, 17, 26, 47]) and

noticing that the operator â~p satisfies the following coercivity condition: there exists c1 > 0

such that for all ξ ∈ IRn,

â~p(ξ) · ξ > |ξ|p− − c1 with p− = Min (pi, i ∈ {1, . . . , n}).

Once the L∞-estimate is obtained, one may apply standard techniques (approximation method

and compactness results) (see [37, 17, 48]) to obtain the following proposition:

Proposition 5.1.

Let f ∈ L1(Ω) ∩W−1,~p′(Ω). Then we have a unique weak solution u ∈ W 1,~p
0 (Ω) satisfying:

(49)

∫
Ω

â~p(∇u) · ∇ϕdx+

∫
Ω

ϕV (x;u)dx =

∫
Ω

f ϕdx, ∀ϕ ∈ W 1,~p
0 (Ω) ∩ L∞(Ω).

Moreover, one has the following energy estimates, for f ∈ L(p∗)′(Ω), p < n,

(50)
n∑
i=1

∫
Ω

|∂iu|pi dx+

∫
Ω

uV (x;u) dx 6 c||f ||p
′

L(p∗)′ ,

where the constant c depends only on Ω and p.

If f ∈ L∞(Ω), then u ∈ L∞(Ω), and there are constants ci independent of V and f so that:

(51) ||u||∞ 6 c1 + c2||f ||
p′−
p−
∞

with p− = Min
(
pi, i = 1, ·, n

)
and p′− its conjugate.
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Remark 5.1.

A large literature is devoted to the existence for anisotropic equations, besides the above ref-

erences, one also has [3, 32, 4]. Those works do not treat the question of local Holderian

properties of the gradient as we did here.

a.) The fact that the constants c1 and c2 in relation (51) do not depend on V is due to

the hypothesis on V which implies that σV (x;σ) > 0, ∀σ ∈ IR.

b.) Compactness results concerning anisotropic equation in general form can be found in

[22] (see also [49, 51]).

c.) When f ∈ L(p∗)′(Ω), the weak formulation is equivalent to the entropic-renormalized

formulation. The proof is the same as in [50].

d.) The entropic-renormalized solution is specially made for f ∈ L1(Ω). But the proof of

the uniqueness for the solution of (48) (see Definition 5.1) is the same as Benilan et

al. [7] or Rakotoson [50], since the operator

Au = −div
(
â~p(∇u)

)
+ V (·;u)

is monotonic. It can be shown that, if u1 and u2 are two solutions in a T -space S1,~p
0 (Ω),

then necessarily, one has for all k > 0∫
|u1−u2|6k

[
â~p(∇u1)− â~p(∇u2)

]
· ∇(u1 − u2)dx 6 0.

As to the existence, it follows using standard approximation technique by replacing f ∈

L1(Ω) by the sequence fj ∈ L∞(Ω) such that ||f −fj||L1 −−−→
j→∞

0, ||fj||1 6 ||f ||1. Then,

one can obtain uniform estimates for the unique weak solution uj ∈ W 1,~p
0 (Ω)∩L∞(Ω)

(52) −∆~puj + V (x;uj) = fj.

The proof of the following theorem follows the same arguments as in [7] and [49, 50, 51, 53, 52].

Theorem 5.1.

Assume that (H1) and(H2). Then there is a unique entropic-renormalized solution u of (48)

given in Definition 5.1. Moreover, for a subsequence denoted by uj, Duj(x)→ Du(x) a.e. in

Ω.

Remark 5.2.

In the next paragraph, we will give new and precise spaces where the gradient should be, under

various conditions. In the case

Min
i
pi = p− > Max

(p′
n′

; 1
)
, n′ =

n

n− 1
, p′ =

p

p− 1
conjugate of p,
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we have u ∈ W 1,1
0 (Ω).

5.2. The definition of the mappings T̃i from L1(Ω) into L
n′pi
p′ ,∞(Ω).

Theorem 5.2.

Let u be the entropic-renormalized solution of equation (46). Then, there exists a constant

c > 0 independent of u and f such that :

(1) meas {|u| > k} 6 c||f ||
p∗
p

L1(Ω)k
− p
∗
p′ , ∀ k > 0.

(2)

∥∥∥∥ ∂u∂xi
∥∥∥∥
L
n′pi,
p′ ∞(Ω)

6 c||f ||
p′
pi

L1(Ω), i = 1, . . . , n.

Proof: For the statement (1), we follow the arguments of Benilan et al [7] so we drop it.

A similar result as for the second statement (2) is given in [4], but the estimate is not precise

as we announce here. More, our method is completely different. To prove it, we apply

the fundamental lemma of Benilan type (see Lemma 3.1, in the third paragraph) choosing

h =

∣∣∣∣ ∂u∂xi
∣∣∣∣pi and g = |u|, to deduce that for λ > 0 and for all k > 0:

(53) meas

{∣∣∣∣ ∂u∂xi
∣∣∣∣pi > λ

}
6

1

λ

∫
|u|6k

∣∣∣∣ ∂u∂ui
∣∣∣∣pi dx+ meas {|u| > k}

(54) 6
k

λ
||f ||L1 + cs||f ||

p∗
p

L1k
− p
∗
p′ .

This implies

meas

{∣∣∣∣ ∂u∂xi
∣∣∣∣pi > λ

}
. Min

k>0

(
1

λ
||f ||L1k + ||f ||

p∗
p

L1k
− p
∗
p′

)
.

Computing the infimum, one has

meas

{∣∣∣∣ ∂u∂xi
∣∣∣∣pi > λ

}
. ||f ||a+1

L1 λ
−n
′
p′ with a = n′

(
1

p
− 1

p∗

)
.

This last inequality implies the result. ♦

In order to derive a Hölderian mapping, we will use, as in [17, 38], the elementary inequalities

(7) and (8).

We will deal with different situations. Let us start with the case pi > 2 for all i.

Theorem 5.3.

Assume (H1), (H2) and p− > Max
(p′
n′

; 2
)

. Let i ∈ {1, . . . , n} . Then, the mapping

T̃i :
L1(Ω) −→ L

n′pi
p′ ,∞(Ω)

f 7−→ T̃if =
∂u

∂xi

where u is the unique entropic-renormalized solution is:
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(1) p′

pi
-Hölderian if p′ < pi,

(2) globally Lipschitz if p′ = pi,

(3) locally Lipschitz if p′ > pi.

(4) More precisely, we have a constant M1 > 0 such that for all f1 and f2 in L1(Ω)

||T̃if1 − T̃if2||
L
n′pi
p′ ,∞

6M1||f1 − f2||
p′
pi

L1 , i ∈ {1, . . . , n}.

Proof: Let f1 and f2 be in L1(Ω). Due to the stability property, we may assume that f1 and

f2 are in L∞(Ω). Let u1 (resp. u2) be the weak solution of (46) associated to f1 (resp. f2).

Then, for all k > 0, using relation (47) one has:

(55) α
n∑

m=1

∫
Ω

|∂mTk(u1 − u2)|pmdx 6 ||f1 − f2||L1

Arguing as in Theorem 5.2, one deduces that ∀k > 0

(56) meas {|u1 − u2| > k} 6 cα||f1 − f2||
p∗
p

L1k
− p
∗
p′ .

From relation (56), by the same argument as before, which uses the fundamental lemma of

Benilan type (see Lemma 3.1, in the second paragraph) with appropriate choices of h and g,

we deduce

||∂i(u1 − u2)||
L
n′pi
p′ ,∞

6 c||f1 − f2||
p′
pi

L1 .

This gives the result. ♦

We have another Hölderian mapping when the data is in L(p∗)′(Ω)

Theorem 5.4.

Assume (H1) and (H2). Let
1

p
=

1

n

∑
i=1

1

pi
with

n∑
i=1

1

pi
> 1, and let f1 and f2 be two functions

L(p∗)′(Ω) with p∗ =
np

n− p
. Furthermore, we assume that p− > 2. Then, for two weak solutions

u1 and u2 associated to f1 and f2, one has

(1)
n∑
i=1

∫
Ω

|∂i(u1 − u2)|pidx 6 c||f1 − f2||p
′

L(p∗)′ ,

(2) ||∂i(u1 − u2)||Lpi 6 c||f1 − f2||
p′
pi

L(p∗)′ for i = 1, . . . , n.

Proof: The proof is straightforward using u1 − u2 as a test function in the weak formulation

for equation (47). ♦

Now, we apply the abstract results concerning interpolations, at first for usual Lorentz spaces

as we did before.
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Theorem 5.5.

Assume (H1), (H2), and p− > Max (2; p′), 1 6 k 6 (p∗)′, r ∈ [1,+∞]. Then for each

i ∈ {1, . . . , n}, the application T̃i is an Hölderian mapping from Lk,r(Ω) into L
k∗pi
p′ ,

rpi
p′ (Ω),

with k∗ =
kn

n− k
. More precisely, for all f1, f2 in Lk,r(Ω), T̃ifj =

∂uj
∂xi

, i = 1, . . . , n, j = 1, 2,

we have

||T̃if1 − T̃if2||
L
k∗pi
p′ ,

rpi
p′

6M2||f1 − f2||
p′
pi

Lk,r
.

Proof: We argue as in Proposition 4.4, following Theorem 2.2. We have

||T̃if1 − T̃if2||
(L

n′pi
p′ ,∞,Lpi )

θ,
rpi
p′

. ||f1 − f2||
p′
pi

(L1,L(p∗)′ )θ,r

whenever θ = p∗
(

1− 1

k

)
, and the identification process (Proposition 4.3) shows that

(
L
n′pi
p′ ,∞, Lpi

)
θ,
rpi
p′

= L
k∗pi
p′ ,

rpi
p′ .

This gives the results. ♦

We may also use the interpolation with a function (1− Logt)λ. Here is an example.

Theorem 5.6.

Assume (H1), (H2), and p′ 6 pi for each i ∈ {1, . . . , n}, m = (p∗)′, λ ∈ IR 1 6 q1 < +∞,

T̃i is
p′

pi
-Hölderian mapping from L

p∗
p∗−1

,q1
(

LogL
)λ

into L
pθi,q1
αi

(
LogL

)λαi
with

1

pθi
=

1− θ
ri

+
θ

pi
, ri =

n′pi
p′

, αi =
p′

pi
.

Proof: We apply the abstract result stated in Theorem 2.2, with

X0 = L1, X1 = L(p∗)′ , Y0 = Lri,∞, Y1 = Lpi , ri =
n′pi
p′
,

the Hölder exponent being αi =
p′

pi
. Since T̃i is

p′

pi
-Hölderian mapping from L1 into Lri,∞ and

from L(p∗)′ into Lpi , we deduce that

T̃i :
(
L1, L(p∗)′

)
θ,q1;λ

−→
(
Lri,∞, Lpi

)
θ,
q1
αi

;λαi

is αi-Hölderian mapping and the identification space gives the right result. ♦

We can have similar results for variable exponent but computations are more complicated

and are not optimal. So we restrict ourselves to some estimates.
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5.3. The Local Hölderian mappings for the case
n∑
i=1

1

pi
< 1. The purpose of this para-

graph is to show the following result, which deals with the case
n∑
j=1

1

pj
=
n

p
< 1.

Theorem 5.7.

Assume (H1) and (H2). Let f ∈ L1(Ω), p > n. Then the unique solution u ∈ W 1,~p
0 (Ω) of the

equation (46) satisfies:

i.): ||u||∞ 6 c||f ||
1
p−1

1 .

ii.):
n∑
i=1

||∂iu||pipi 6 c||f ||p
′

1 ,
1

p′
+

1

p
= 1.

iii.): In particular if u1 (resp. u2) is the solution associated to f1 (resp. f2), we have

for i ∈
{

1, . . . , n
}

(1) If pi > 2, then:

||∂i(u1 − u2)||pipi . ||f1 − f2||1 ||u1 − u2||∞.

(2) If pi < 2, then :∫
Ω

|∂i(u1 − u2)|2

(|∂iu1|+ |∂iu2|)2−pi
dx 6 ||f1 − f2||1 ||u1 − u2||∞.

Proof: Note that when p > n, L1(Ω) is a subspace of the dual of W 1,~p
0 (Ω), therefore the

existence and uniqueness follows from standard theorem concerning monotone operators (see

Lions [37]) or using fixed point theorems. So we have for the solution u ∈ W 1,~p
0 (Ω), noticing

that uV (x, u) > 0, that

(57)
n∑
i=1

||∂iu||pipi 6
∫

Ω

fudx 6 ||f ||1 ||u||∞.

Now we use the convexity of the exponential function. Setting temporarily λi =
p

npi
, one has

n∑
i=1

λi = 1, and setting ai = ||∂iu||pi , one has

[
n∏
i=1

ai

]p/n
= e[

∑n
i=1 λiLog a

pi
i ] 6

n∑
i=1

λia
pi
i 6

n∑
i=1

apii .

Hence

(58)

[
n∏
i=1

||∂iu||pi

] 1
n

6 (||f ||1 ||u||∞)
1
p .
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Using the Poincaré-Sobolev inequality given in Corollary 1.1.1 of Theorem 1.1, we derive

(59) ||u||∞ . ||f ||
1
p−1

1 .

Combining relations (57) and (59), we get the statement i.).

Let u1 (resp. u2) be the solution associated to f1 (resp. f2).

Since
(
V (x;u1)−V (x;u2)

)
(u1−u2) > 0, equation (46) implies, using elementary inequalities

(see relations (7) and (8)), that∑
{i:pi>2}

||∂i(u1 − u2)||pipi +
∑
{i:pi<2}

∫
Ω

|∂i(u1 − u2)|2

(|∂iu1|+ |∂iu2)2−pi
dx 6 ||f1 − f2||1 ||u1 − u2||∞,

from which we derive the result. ♦

Corollary 5.7.1 (of Theorem 5.7). Let p > n, i ∈
{

1, . . . , n
}

. Then the mapping T̃i :

L1(Ω) −→ Lpi(Ω)

f 7−→ ∂u

∂xi
,

where u is the unique solution of (46), satisfies

1st case:

If pi > 2, then T̃ is a locally
1

pi
-Hölderian mapping and for f1 ∈ L1(Ω), f2 ∈ L1(Ω)

||T̃if1 − T̃if2||pi .
[
||f1||

1
p−1 + ||f2||

1
p−1

] 1
pi ||f1 − f2||

1
pi
1 .

2nd case:

If 1 < pi < 2, then T̃i is a locally
1

2
-Hölderian mapping and

||T̃if1 − T̃if2||pi . G0

(
||f1||; ||f2||

)
||f1 − f2||

1
2
1

with G0(t;σ) =
(
tp
′
+ σp

′
) 1
pi
− 1

2
(
t

1
p−1 + σ

1
p−1

) 1
2

for (t, σ) ∈ [0,+∞[×[0,+∞[.

Proof: If i is such that pi > 2, then following Theorem 5.7,

||∂i(u1 − u2)||pi . ||f1 − f2||1
[
||u1||1 + ||u2||∞

]
6

[
||f1||

1
p−1

1 + ||f2||
1
p−1

1

]
||f1 − f2||1.

This gives the first statement.

Let i be such that 1 < pi < 2. From Hölder’s inequality, using Theorem 5.7 iii.), we have

(60) ||∂i(u1 − u2)||pipi 6
[
||f1 − f2||1 ||u1 − u2||∞

] pi
2
[
||∂iu1||pipi + ||∂iu2||pi

]1− pi
2
.

Using i.) and ii.) of Theorem 5.7,

||∂i(u1 − u2)||pi .
[
||f1||

1
p−1

1 + ||f2||
1
p−1

] 1
2 [
||f1||p

′

1 + ||f2||p
′

1

] 1
pi
− 1

2 ||f1 − f2||
1
2
1 .
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This gives the results. ♦

As we observed, if pi > 2 ∀ i, we may have a global-Hölderian or Lipschitzian mapping.

Corollary 5.7.2 (of Theorem 5.7). If p− = Min
i
pi > 2, then for all i ∈

{
1, . . . , n

}
||T̃if1 − T̃if2||pi . ||f1 − f2||

p′
pi
1 ∀ f1 and ∀ f2 in L

1(Ω).

6. Few estimates for the solution of −∆p(·)u+ V (x;u) = f ∈ L1(Ω)

6.1. Existence and uniqueness for −∆p(·)u+ V (x;u) = f ∈ L∞(Ω).

For the p(·)-Laplacian associated to variable exponent, we shall consider the same framework

that we introduced in the first paragraph, in particular p : Ω →]0,+∞[, will be a bounded

log-Hölder continuous function

1 < p− = Min
x∈Ω

p(x) 6 p+ = Max
x∈Ω

p(x) < n, p∗(x) =
np(x)

n− p(x)
,

whose conjugate is denoted by [p∗(·)]′ = (p∗)′(·). Moreover, we set

p′(x) =
p(x)

p(x)− 1
, x ∈ Ω, p∗− = Min

x∈Ω
p∗(x), p∗+ = Max

x∈Ω
p∗(x), idem for p′ conjugate of p.

For convenience, we shall add the following assumption for V :

(H4) : ∃ ε > 0, f0 ∈ IR+, such that sign(t)V (x; t) > |t|ε − f0, for a.e. x ∈ Ω, all t ∈ IR.

Such assumption is true if for instance V (x; t) = |t|p(x)−2t with ε = p− − 1. We need (H4)

only to ensure boundedness of solution when the right hand side is bounded. We first have:

Proposition 6.1.

Assume (H1), (H2), and (H4), and let f be in L∞(Ω). Then we have a unique element

u ∈ W 1,p(·)
0 (Ω) ∩ L∞(Ω) such that:

(61)

∫
Ω

|∇u|p(x)−2∇u · ∇ϕdx+

∫
Ω

ϕV (x;u)dx =

∫
Ω

f ϕ dx ∀ϕ ∈ W 1,p(·)
0 (Ω).

Moreover, we have

(62)

∫
Ω

|∇u|p(x)dx+

∫
Ω

uV (x;u)dx 6 C
[
||f ||p

′
−

(p∗(·))′ + ||f ||
p′+
(p∗(·))′

]

(63) ||u||∞ 6M + 1,with
(
f0 + ||f ||∞

) 1
ε
=̇M.

Idea of the proof

Let k = M + 1, and define the operator A from W = W
1,p(·)
0 (Ω) into W ′ = W−1,p′(·)(Ω) by

Av = −∆p(.)v + V (·;Tk(v)), v ∈ W.
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Due to the assumption (H1) and (H2) on W , one can check that A is hemi-continuous,

monotonic and coercive (see Lions’s book for the definition [37]).

Therefore, ∀ f ∈ W ′, we have an element u ∈ W : Au = f. Since the p(·)-Laplacian is strictly

monotonic and L∞(Ω) ⊂ W ′, we deduce that u is unique and solves

(64)

∫
Ω

|∇u|p(x)−2∇u · ∇ϕdx+

∫
Ω

ϕV
(
x;Tk(u)

)
dx =

∫
Ω

f ϕ dx, for all ϕ ∈ W 1,p(·)
0 (Ω).

Let us show the L∞-estimates. For this purpose, we consider

ϕ =
(
|Tk(u)| −M

)
+

sign(u) ∈ W 1,p(·)
0 (Ω).

Then, dropping the first term, we have:

(65)

∫
Ω

(
|Tk(u)| −M

)
+

sign(u) · V
(
x;Tk(u)

)
dx 6 ||f ||∞

∫
Ω

(
Tk(u)| −M

)
+
dx.

Taking into account the hypothesis (H4), we derive from relation (65) that

(66)

∫
Ω

(
|Tk(u)| −M

)
+

[
|Tk(u)|ε −

(
f0 + ||f ||∞

)]
dx 6 0.

The set
{
|Tk(u)| > M

}
is equal to

{
|Tk(u)|ε >

(
f0 + ||f ||∞

)}
. So we deduce from (66) that{

|Tk(u)| > M
}

is of measure zero, i.e. |Tk(u)| 6 M a.e. in Ω. But k > M and this implies

that |u(x)| 6 k almost everywhere in Ω. This relation and equation (64) imply that u is a

solution of (61). The uniqueness follows from the fact that[
âp(·)(ξ)− âp(·)(ξ′)

]
[ξ − ξ′] > 0 if ξ 6= ξ′, âp(·)(ξ) = |ξ|p(x)−2ξ. ♦

Remark 6.1.

• We may have ||u||∞ 6 M = (f0 + ||f ||∞)
1
ε if f0 > 0 or ||f ||∞ > 0, using the same

argument but choosing k = M , ϕ =
[
|Tk(u)| −M + η

]
+

sign(u) with η small enough

so that M > η.

• The energy inequality is obtained by choosing ϕ = u and applying Poincaré-Sobolev

inequality to derive ∫
Ω

fu 6 c||f ||p∗(·)′||∇u||p(·).

Using Proposition 1.1, we have

||∇u||p(·) 6
(∫

Ω

|∇u(x)|p(x)dx

) 1
p−

+

(∫
Ω

|∇u(x)|p(x)dx

) 1
p+

,
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and therefore∫
Ω

|∇u|p(x)dx+

∫
Ω

uV (x;u)dx 6 c
[
||f ||p

′
−

(p∗)′ + ||f ||
p′+
(p∗)′

]
.

♦

• Related existence and uniqueness results are also given in [11]. But they do not consider

with a lower term and the estimates that we provide here are sharper and precise.

More, the compactness provided below is different of their method and we give results

on Hölderian properties that are not included in their results.

The Proposition 6.1 is the basis of the existence results when we change the definition of weak

solution in (61) by entropic solution or renormalized solution, or simply taking the data f in

the space L1(Ω) ∩W−1,p′(.)(Ω). Here is an example of such a result:

Corollary 6.1.1 (of Proposition 6.1). For f ∈ L(p∗(·))′, there exists a unique weak solution

u of (61) with the test functions ϕ ∈ W 1,p(·)
0 (Ω) ∩ L∞(Ω), which means that

(67)

∫
Ω

|∇u|p(x)−2∇u · ∇ϕdx+

∫
Ω

ϕV (x;u)dx =

∫
Ω

fϕ dx.

Sketch of the proof

Let fj = Tj(f) ∈ L∞(Ω). Then ∀λ > 0∫
Ω

∣∣∣∣fj(x)

λ

∣∣∣∣(p∗(x))′

dx 6
∫

Ω

∣∣∣∣f(x)

λ

∣∣∣∣(p∗(x))′

dx.

Therefore,

||fj||[p∗(·)]′ 6 ||f ||[p∗(·)]′ .

Following Proposition 6.1, we have uj ∈ W 1,p(·)
0 (Ω) such that (61) and (62) hold. We derive

(68)

∫
Ω

|∇uj|p(x)dx+

∫
Ω

ujV (x;uj)dx 6 c
[
||f ||p−[p∗(·)]′ + ||f ||

p+
[p∗(·)]′

]
.

Since W
1,p(·)
0 (Ω) is a reflexive space, we have u ∈ W 1,p(·)

0 (Ω) and a subsequence still denoted

by uj such that the sequence(uj)j converges weakly to a function u in W
1,p(·)
0 (Ω), almost

everywhere in Ω and strongly (by compactness) in Lp−(Ω).

Moreover, the fact that 0 6
∫

Ω

ujV (x;uj)dx 6 Cf < +∞ implies that

(69) sup
j

∫
Ω

|V (x;uj)|dx 6 C ′f < +∞.
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Hence we have

∫
Ω

|V (x;u)|dx 6 C ′f using Fatou’s lemma. Moreover, choosing

ϕ =
(
|uj| − t

)
+

sign(uj), t > 0, we derive from (61)

(70)

∫
|uj |>t

|V (x;uj)|dx 6
∫
|uj |>t

|fj|dx.

Therefore we get

(71) lim
j→+∞

∫
Ω

|V (x;uj)− V (x;u)|dx = 0.

♦

For the strong convergence of the gradient, we recall the following lemma, which is based on

the monotonicity of the mapping âp(.)(ξ) = |ξ|p(x)−2ξ in our case (see [49, 51]).

Lemma 6.1.

Let (uj)j be a sequence of W
1,p(·)
0 (Ω) having the following properties :

(1) There exists q(·), 1 < q− 6 q(·) 6 p(·), such that (uj) remains in a bounded set of

W
1,q(·)
0 (Ω) and (uj) converges weakly and a.e. to a function u.

(2) zkj = Tk(uj) remains in a bounded set of W
1,p(·)
0 (Ω) for all k > 0.

(3) ∀ k > 0, we have a real function ck, such that

∀ 0 < ε < ε0, lim sup
j

∫
|uj−Tk(u) |<ε

âp(·)(∇uj) · ∇
(
uj − Tk(u)

)
dx 6 ck(ε) and lim

ε→0
ck(ε) = 0.

Then, for a subsequence still denoted by (uj):

(a) ∇uj(x) −−−−→
j→+∞

∇u(x) a.e in Ω.

(b) If furthermore the conjugate s of s′(·)=
q(·)

p(·)− 1
satisfies lim

m→∞

1

m

[ ∫
Ω

sm(x)dx
] 1
m

=

0, then

lim
j

∫
Ω

∣∣∣|∇uj|q(x)−2∇uj dx−
∫

Ω

|∇u|q(x)−2∇u
∣∣∣ dx = 0.

(c) In particular, for all ϕ ∈ W 1,q′(·)
0 (Ω)

lim
j

∫
Ω

|∇uj|q(x)−2∇uj · ∇ϕdx =

∫
Ω

|∇u|q(x)−2∇u · ∇ϕdx.

Proof: The proof of the first statement is similar to Lemma 2 of [51] (see also [49]) or Lemma

A.5 of [52] for a more general case, so we drop it. But for the second statement, we need to

use Theorem 2.1 of [28] and Vitali’s convergence lemma. Indeed, let us set

hj =
∣∣∣|∇uj|q(x)−2∇uj dx−

∫
Ω

|∇u|q(x)−2∇u
∣∣∣.
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Then, the preceding statement shows that hj(x) → 0 almost everywhere in Ω. Besides

applying Hölder’s inequality, we have the following uniform integrability, for all measurable

set E ⊂ Ω: ∫
E

|hj(x)|dx 6 c||χE||s(·),

for some constant c independent of j and E. Following Theorem 2.1 of [28], the condition

on s implies that ||χE||s(·) tends to zero as meas (E) tends to zero. Thus the conditions of

Vitali’s convergence lemma are fulfilled, so that lim
j

∫
Ω

|hj(x)|dx = 0 . ♦

Since Tk(u) ∈ W
1,p(·)
0 (Ω), for all k > 0, then for any ε > 0 the function Tε(uj − Tk(u)) is

a suitable test function in relation (61). We then derive the third statement of Lemma 6.1.

Therefore we have the necessary convergences for the gradient to pass to the limit in the

equation

(72)

∫
Ω

|∇uj|p(x)−2∇uj∇ϕdx+

∫
Ω

ϕV (x;uj)dx =

∫
Ω

fjϕ ϕ ∈ W 1,p(·)
0 (Ω) ∩ L∞(Ω),

so that u solves the equation (67).

The uniqueness is a consequence of strong monotonicity of the âp(·). ♦

Corollary 6.1.2 (of Proposition 6.1, Local Hölderian mapping). Assume that p− > 2.

The mapping T ∗ :
L(p∗(·))′(Ω) −→

[
Lp(·)(Ω)

]n
f 7−→ T ∗f = ∇u

is α1 =
p′−
p+

-local Hölderian mapping.

Here u is the solution of (67) associated to f .

More precisely, we have: ∀ f1, f2 in L[p∗(·)]′(Ω)

||T ∗f1 − T ∗f2||p(·) . Φ2(f1; f2)||f1 − f2||α1

[p∗(·)]′

where Φ(f1; f2) = ||f1 − f2||1−α1

L[p∗(·)]′ + ||f1 − f2||α2−α1

L[p∗(·)]′ + 1 with α2 =
p′+
p−
.

Proof: If u1 (resp u2) is the solution of (61) with f = f1 (resp f2 ∈ L[p∗(·)]′(Ω)), then∫
Ω

|∇u1 −∇u2|p(x)dx 6 c
[
||f1 − f2||p−[p∗(·)]′ + ||f1 − f2||p+[p∗(·)]′

]
.

Since we have

2||∇(u1 − u2)||p(·) 6
[∫

Ω

|∇(u1 − u2)p(x)dx

] 1
p−

+

[∫
Ω

|∇(u1 − u2)p(x)dx

] 1
p+

,

we get the result, noticing that 1 > α2 =
p′+
p−

>
p′−
p+

= α1. ♦
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6.2. A priori estimates for variable exponents with data in L1(Ω).

We only give a priori estimates starting with the equation (61).

Proposition 6.2.

For a solution u of (61), one has:

(1)

∫
Ω

|∇Tk(u)|p(x)dx 6 k||f ||1, ∀ k > 0.

(2) ||∇Tk(u)||p(·) 6 Max
(

(k||f ||1)
1
p+ ; (k||f ||1)

1
p−

)
.

(3) ||Tk(u)||p∗(·) . Max
(

(k||f ||1)
1
p+ ; (k||f ||1)

1
p−

)
.

Proof: Taking as a test function ϕ = Tk(u), we get (1). In order to get (2), we use the estimate

2||∇Tk(u)||p(·) 6
(∫

Ω

∣∣∣∇Tk(u)
∣∣∣p(x)

dx

) 1
p+

+

(∫
Ω

∣∣∣∇Tk(u)
∣∣∣p(x)

dx

) 1
p−

and statement (1).

Finally, the last statement is a consequence of the Poincaré-Sobolev inequality. ♦

Next we want to study the decay of meas
{
|∇u|p(·) > λ

}
, for λ > 0. To make our computation

easier, we will take the new variable k = k||f ||1, k > 0. We have:

Proposition 6.3.

For all λ > 0, all k > 0, we have

meas
{
|∇u|p(·) > λ

}
6
k

λ
+ meas

{
|u| > k

}
.

Proof: We use first the fundamental lemma of Benilan type, see Lemma 3.1 with h = |∇u|p(·),

g = |u| and then we apply the statement (1) of the preceding Proposition 6.2 to conclude. ♦

Next, we need to estimate the decay of meas
{
|u| > k

}
. One has:

Proposition 6.4.

Let a1 =
p∗+
p−
− p∗−, ψ1(t) = Max

(
tp
∗
+ ; tp

∗
−

)
for t > 0. Assume that a1 < 0, that is

n− p−
n− p+

< p−

(
p−
p+

)
.

Then

meas
{
|u| > k

}
. ψ1

(
||f ||1

)
k−|a1| with k = k||f ||1.

Proof: We know that for ε < k, one has
{
|u| > ε

}
=
{
|Tk(u)| > ε

}
. The same argument as

before leads to

(73) meas
{
|u| > k

}
6 Max

(
||f ||p

∗
+

1

kp
∗
+

;
||f ||p

∗
−

1

kp
∗
−

)∫
Ω

|Tk(u)|p∗(x)dx,
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from which we get, using statement (3) of Proposition 6.2,

meas
{
|u| > k

}
. ψ1

(
||f ||1

)
Max

(
k−p

∗
+ ; k−p

∗
−

)
Max

(
M1(k)p

∗
+ ;M1(k)p

∗
−

)
where M1(k) = Max

(
k

1
p+ ; k

1
p−

)
.

If k > 1, then the above estimate is reduced to

meas
{
|u| > k

}
6 ψ(||f ||1)k−|a1|, a1 =

p∗+
p∗−
− p∗−.

If k 6 1, then it is reduced to

meas
{
|u| > k

}
6 ψ1(||f ||1)ka2 , with a2 =

p∗−
p+

− p∗+.

But we have

a1 − a2 =
n2(p+ − p−)

(n− p+)(n− p−)

[
1

p+

+
1

p−
+
n− 1

n

]
> 0 : a1 > a2,

and therefore for k 6 1, ka2 6 k−|a1|.

So for all k > 0, one has

meas
{
|u| > k

}
. ψ1(||f ||)k−|a1|.

♦

Theorem 6.1. (main estimate for the L1-data)

Under the same assumptions as for Proposition 6.4, there exists a constant c > 0 depending

only on p, n, Ω such that

meas
{
|∇u|p(·) > λ

}
6 c ψ1(||f ||1)

1
1+|a1|λ

− |a1|
1+|a1| ∀λ > 0.

Proof: From Proposition 6.3 and Proposition 6.4, we have, for all k > 0,

meas
{
|∇u|p(·) > λ

}
6
k

λ
+ c1ψ1(||f ||1)k−|a1|

where c1 depends only the Sobolev constant that is on Ω, n, p. Taking the infimum of the

right hand side, we derive the result. ♦

Corollary 6.1.1 (of Theorem 6.1). Assume that
|a1|

1 + |a1|
p− > 1. Then for all q ∈[

p+

p−
,
|a1|

1 + |a1|
p+

[
we have ∫

Ω

|∇u|
q
p+

p(x)
dx 6 c ψ1(||f ||1)

q
p+|a1|

where c depends only on Ω, p, n.
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Proof: From Theorem 6.1, we deduce∫
Ω

|∇u|
q
p+

p(x)
dx 6 c ψ1(||f ||)

q
p+|a1|

∫ |Ω|
0

t
− 1+|a1|
|a1

q
p+ dt < +∞.

♦

Remark 6.2.

We recover all the condition that we obtained in the preceding section when p(x) = p is

constant. In particular, the condition
|a1|

1 + |a1|
p− > 1 is equivalent to p > 2− 1

n
since we have

p
|a1|

1 + |a1|
=

n

n− 1
(p− 1).

6.3. Appendix : An existence and uniqueness result of an entropic-renormalized

solution for variable exponents.

Although it is not the purpose of our paper, we will show now how to prove the existence of

an entropic-renormalized solution. The principle is the same as we did in our previous papers,

but for convenience, here we give the main steps.

Theorem 6.2.

Let q be as in Corollary 6.1.1 of Theorem 6.1. Assume (H1), (H2), and (H4), that

q >
p+

p−
(p+ − 1), and let f ∈ L1(Ω). Then there exists a unique solution u ∈ W 1,q(·)

0 (Ω) with

q(x) =
q

p+

p(x) such that

∀ η ∈ W 1,∞(Ω), ∀B ∈ W 1,∞(IR) with B(0) = 0, B′(σ) = 0 for |σ| > σ0 > 0,

∀ϕ ∈ W 1,p(·)
0 (Ω) ∩ L∞(Ω)∫

Ω

âp(·)(∇u) · ∇
(
ηB(u− ϕ)

)
dx+

∫
Ω

ηB(u− ϕ) · V (x;u)dx =

∫
Ω

ηB(u− ϕ)fdx.

Proof: We only give the main steps for the existence. Consider fj = Tj(f) ∈ L∞(Ω). Following

Proposition 6.1, we have a unique function uj ∈ W 1,p(·)
0 (Ω) ∩ L∞(Ω) satisfying relation (61).

Moreover the above Corollary 6.1.1 of Theorem 6.1 shows that uj remains in a bounded set

of W
1,q(·)
0 (Ω), and we have

(74) sup
j

∫
Ω

‖∇uj|q(x)dx 6 c ψ1

(
||f ||1

) q
p+|a1| .

Taking as a test function Tk(uj) = ϕ in relation (61), we deduce

(75)

∫
Ω

|∇Tk(uj)|p(x)dx 6 k||f ||1.

Since 1 < q(·) < p+ < +∞, the space W
1,q(·)
0 (Ω) is reflexive, and we may subtract a sequence

still denoted uj, and have an element u ∈ W 1,q(·)
0 (Ω) such that
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• uj converges weakly to u in W
1,q(·)
0 (Ω).

• uj(x) −−−−→
j→+∞

u(x) a.e in Ω.

• Tk(uj) converges weakly to Tk(u) in W 1,p
0 (Ω) for all k > 0.

Taking as a test function ϕ =
(
|uj| − t

)
+

sign(uj), t > 0, and dropping non negative term,

we have

(76)

∫
|uj |>t

|V (x;uj)|dx 6
∫
|uj |>t

|f |dx.

This relation with the pointwise convergence and assumptions (H1) and (H2), implies

(77) lim
j

∫
Ω

|V (x;uj)− V (x;u)|dx = 0.

Next, we choose as a test function ϕ = Tε

(
uj − Tk(u)

)
with ε > 0, so we have

(78)

∫
|uj−Tk(u)|<ε

âp(·)(∇uj) · ∇
(
uj − Tk(u)

)
dx 6 ε

[
||f ||1 +

∫
Ω

|V (x;uj|dx
]
.

Therefore, we have

(79) lim sup
j

∫
|uj−Tk(u)|<ε

âp(·)(∇uj) · ∇
(
uj − Tk(u)

)
dx 6 ε

[
||f ||1 +

∫
Ω

|V (x;u)|dx
]
.

We may invoke Lemma 6.1 to derive, for a sequence still denoted (uj), that ∇uj(x) −−−−→
j→+∞

∇u(x) a.e. in Ω. The condition that q >
p+

p−
(p+ − 1) implies, for all x,

q(x) =
q

p+

p(x) >
q

p+

p− > p+ − 1 > p(x)− 1 > p− − 1 > 0. Therefore

(80) lim
j

∫
Ω

∣∣∣ |∇uj(x)|p(x)−2∇uj(x)− |∇u(x)|p(x)−2∇u(x)
∣∣∣dx ≡ 0.

Indeed, let us set gj(x) =
∣∣∣ |∇uj|p(·)−2∇uj−|∇u|p(·)−2∇u

∣∣∣(x). Since r(x)=̇
q(x)

p(x)− 1
>

qp−
p+(p+ − 1)

>

1, r ∈ C(Ω), we may apply [28, Theorem 2.1] to derive that for all measurable set E ⊂ Ω,

(81) lim
|E|→0

||χE||r′(·) = 0

where r′(x) =
r(x)

r(x)− 1
, and χE is the characteristic function of E. But the boundedness of

the sequence (uj)j in W
1,q(·)
0 (Ω) and Hölder inequality imply, for all measurable set E, that

(82) sup
j

∫
E

|gj(x)|dx 6 c||χE||r′(·).

Thus, we may apply Vitali’s convergence theorem to derive

lim
j→+∞

∫
Ω

|gj(x)|dx = 0
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since gj(x) −−−−→
j→+∞

0 a.e., so that we have the uniform integrability given by (82).

The convergences given by relation (77) and relation (80) are enough to prove the existence

of a weak solution when f ∈ L1(Ω).

To obtain an entropic-renormalized solution, we need further estimates:

Lemma 6.2. (Gradient behavior)

One has for all m > 0, all j > 0:

(1)

∫
{x:m6|uj |6m+1}

|∇uj(x)|p(x)dx 6
∫

Ω

|f |
∣∣∣Tm+1(uj)− Tm(uj)

∣∣∣dx.
(2)

∫
{x:m6|uj |6m+1}

|∇u(x)|p(x)dx 6 lim sup
j

∫
{x:m6|uj |6m+1}

|∇uj(x)|p(x)dx

6
∫

Ω

|f(x)|
∣∣∣Tm+1(u)− Tm(u)

∣∣∣dx −−−−→
m→+∞

0.

Proof: We can take as test function ψmj = Tm+1(uj)− Tm(uj). Since∫
Ω

ψmj V (x;uj)dx > 0,

and ∫
Ω

âp(·)(∇uj) · ∇ψmjdx =

∫
m6|uj |6m+1

|∇uj(x)|p(·)dx,

we get statement (1). On the other hand, statement (2) follows from (1) using Fatou’s lemma

and pointwise convergences of the gradient for the lower bound and the pointwise convergence

of uj for the upper bound, combined with the Lebesgue dominated convergence. ♦

For convenience for the next results, for v ∈ L1(Ω), we shall denote vm = Tm(v) and we define

hm ∈ W 1,∞(IR) :

hm(σ) =


1 if |σ| 6 m,

0 if |σ| > m+ 1,

m+ 1− |σ| otherwise.

Lemma 6.3.

Let η ∈ W 1,r(Ω), r > n, b ∈ W 1,∞(IR) with B(0) = 0, B′(σ) = 0 for |σ| > σ0 > 0,

ϕ ∈ W 1,p(·)
0 (Ω) ∩ L∞(Ω) and set ϕmj = ηB

(
Tm+1(u)− ϕ

)
hm(uj). Then

(1) ϕmj ∈ W 1,p(·)
0 (Ω) ∩ L∞(Ω), ∀m > 0, ∀ j > 0.

(2)

∣∣∣∣∫
Ω

|∇um+1
j |p(x)−2∇um+1

j ∇
(
ηB
(
um+1 − ϕ

))
hm(uj) +

∫
Ω

ϕmj

[
V (x;uj)− fj

]
dx

∣∣∣∣
6 ||η||∞|| ||B||∞

∫
m6|uj |6m+1

|∇uj|p(x)dx.
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Proof: Taking ϕmj as a test function, in the relation (64) satisfied by the solution uj, we have

:∣∣∣∣∫
Ω

|∇um+1
j |p(x)−2∇um+1

j ∇
(
ηB(um+1 − ϕ)

)
hm(uj) +

∫
Ω

ϕmj

[
V (x;uj)− fj

]
dx

∣∣∣∣
=

∣∣∣∣∫
Ω

|∇um+1
j |p(x)−2∇um+1

j

(
ηB(um+1 − ϕ)

)
∇hm(uj)

∣∣∣∣ = A.

Since hm(uj) ∈ W 1,p(·)(Ω), and

|∇hm(uj)| 6

|∇uj| if m 6 |uj| 6 m+ 1,

0 elsewhere ,

the last quantity A can be estimated as:

A 6 ||η||∞|| ||B||∞
∫
m6|uj |6m+1

|∇uj|p(x)dx,

so we derive statement (2).

Let us note that ηB
(
um+1 − ϕ

)
is in W

1,p(·)
0 (Ω), âp(0) = 0. ♦

Lemma 6.4.

For fixed m, âp(·)(∇um+1
j ) converges weakly to âp(·)(∇um+1) in [Lp

′(·)(Ω)]n.

Proof: The pointwise convergence of the gradient implies

âp(·)(∇um+1
j ) −→ âp(∇um+1) a.e in Ω.

Furthermore, we know that

||âp(·)(∇um+1
j )||Lp′(·) 6 cm < +∞.

By the reflexivity of [Lp
′(·)(Ω)]n, we derive the result. ♦

Corollary 6.2.1 (of Lemma 6.2, 6.3, 6.4).

The function u satisfies, for all m > 0∣∣∣ ∫
Ω

âp(·)(∇um+1) · ∇(ηB
(
um+1 − ϕ

)
)hm(u) +

∫
Ω

hm(u)ηB
(
um+1 − ϕ

)[
V (x;u)− f

]
dx
∣∣∣

6 ||η||∞||B||∞
∫

Ω

|f(x)|
∣∣∣Tm+1(u)− Tm(u)

∣∣∣dx.
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Proof: Since∇
(
ηB
(
um+1 − ϕ

))
hm(uj) converges strongly to∇(ηB

(
um+1 − ϕ

)
)hm(u) in [Lp(·)(Ω)]n,

combining with the weak convergence of Lemma 6.4, we obtain

(83)

lim
j→+∞

∫
Ω

âp(·)(∇um+1
j )∇

(
ηB
(
um+1 − ϕ

))
hm(uj)dx =

∫
Ω

âp(∇um+1)·∇(ηB
(
um+1 − ϕ

)
)hm(uj)dx.

Since V (·;uj) (resp. fj) converges strongly to V (·u) (resp f) in L1(Ω), we have

(84) lim
j→+∞

∫
ϕmj

[
V (x;uj)− fj

]
dx =

∫
Ω

hm(u)ηB
(
um+1 − ϕ

)[
V (x;u)− f

]
dx.

Combining with Lemma 6.2, the two last relations and Lemma 6.3 give the result. ♦

We then have:

Lemma 6.5.

(1) lim
m→+∞

∫
Ω

âp(·)(∇um+1)∇
(
ηB
(
um+1 − ϕ

))
hm(u)dx =

∫
Ω

âp(·)(∇u) · ∇
(
η B(u− ϕ)

)
dx.

(2) lim
m→+∞

∫
Ω

hm(u)ηB
(
um+1 − ϕ

)[
V (x;u)− f

]
dx =

∫
Ω

ηB(u− ϕ)
[
V (x;u)− f

]
dx.

Proof: As we have already observed before,

(85) âp(·)(∇um+1) · ∇
(
ηB
(
um+1 − ϕ

))
hm(u) = âp(·)(∇u) · ∇

(
ηB
(
u− ϕ

))
hm(u),

because of the definition of hm, âp(·)(0) = 0.

Moreover, when expanding the gradient, we have:

âp(·)(∇u) · ∇
(
ηB
(
u− ϕ

))
= âp(·)(∇u) · ∇ηB(u− ϕ) + âp(·)(∇u) · ∇uB′(u− ϕ)η.

Since B′(u− ϕ) = 0 if |u− ϕ| > σ0, then, setting k0 = ||f ||∞ + σ0, we have:

âp(·)(∇u) · ∇uB′(u− ϕ)η = âp(·)(∇uk0) · ∇uk0B′(u− ϕ)η.

Hence we deduce, from the preceding decomposition, the following estimate:∣∣∣âp(·)(∇u)∇
(
ηB
(
u− ϕ

))∣∣∣ 6 c
[
|∇u(x)|p(x)−1 + |∇uk0|p(x)

]
=̇R(x).

Here c > 0 is independent of u, ϕ .

One has R ∈ L1(Ω). Therefore, by the Lebesgue dominated theorem, we have:

(86) lim
m→+∞

∫
Ω

âp(·)(∇u) ·
(
∇ηB

(
u− ϕ

))
hm(u) =

∫
Ω

âp(·)(∇u)∇
(
ηB
(
u− ϕ

))
.

Both relations (85) and (86) infer the first statement (1) of Lemma 6.5 while the second one

comes from the Lebesgue dominated theorem. ♦

End of the proof of the main theorem
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Letting m → +∞ in Corollary 6.2.1 of Lemmas 6.2 to 6.4 with the help of Lemma 6.5, we

get that u is an entropic-renormalized solution.

For the uniqueness, we may use the method of Benilan et al [7] since any entropic-renormalized

solution is also an entropic solution in their sense. Note that here, in our case, the solution

is always in W 1,1
0 (Ω). The second method consists in noticing that since f1 (resp f2) are two

elements of L1(Ω) and u1 (resp u2), we have:

Lemma 6.6.

(87)

∫
Ω

∆[u1 − u2]

1 + |u1 − u2|
dx 6

π

2

∫
Ω

|f1 − f2|dx

whenever ∆[u1;u2] =
[
âp(·)(∇u1)− âp(·)(∇u2)

]
· ∇u(u1 − u2) > 0.

The proof of this lemma needs the following result, which can be carried out in an even more

general situation:

Lemma 6.7.

Let w be in W 1,1
loc (Ω) such that for all k > 0, Tk(w) = wk ∈ W 1,p(.)

0 (Ω) and let B ∈ W 1,∞(IR)

with B(0) = 0, B′(σ) = 0 for all σ such |σ| > σ0 > 0, ϕ ∈ W 1,p(.)
0 (Ω)∩L∞(Ω). Then B(w−ϕ)

is in W
1,p(.)
0 (Ω) ∩ L∞(Ω).

Proof of Lemma 6.7

If we choose k = σ0 + ‖|ϕ||∞, then B(wk − ϕ) is in W
1,p(.)
0 (Ω) ∩ L∞(Ω). Moreover, almost

everywhere in Ω,

∇B(wk − ϕ) = B′(w − ϕ)∇(w − ϕ) = ∇B(w − ϕ).

Since ∇B(w − ϕ) ∈ W 1,1
loc (Ω), then the above equality holds in the sense of distribution and

implies the result. ♦

Proof of Lemma 6.6

The main theorem shows that if f1j = Tj(f1), then necessarily any weak solution (v1j)j

associated to f1j = Tj(f1) ∈ L∞(Ω) remains in a bounded set of W
1,q(·)
0 (Ω), and there exists a

subsequence
(
v1σ(j)

)
j

associated to f1j ∈ L∞(Ω) and a function v ∈ W 1,q(·)
0 (Ω) which satisfy

∇v1σ(j) → ∇v and v1σ(j) → v a.e in Ω and v1j .

Let us show that we have necessarily ∇u1 ≡ ∇v.

Indeed, for k > 0, B = tan−1(Tk) is in W 1,∞(IR), B′(0) = 0 if |σ| > k. Then, according

to Lemma 6.7, ϕ = v1σ(j) and B(u− ϕ) are suitable test functions for both equations (weak
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formulation and entropic-renormalized formulation), hence we then have after letting k →

+∞: ∫
Ω

[
âp(·)(∇u1)− âp(·)(v1σ(j))

]
·
∇(u− v1σ(j))dx

1 + |u1 − v1σ(j)|2
6
π

2

∫
Ω

|f1 − Tσ(j)f1|.

Letting j → +∞ ∫
Ω

∆(u1; v)

1 + |u1 − v|2
dx = 0

from which ∆(u1; v) = 0 a.e., so that ∇u1 = ∇v.

This result shows that the whole sequence (vj) must satisfy lim
j→+∞

∫
Ω

|∇u1 −∇vj|dx = 0.

This remark shows us if f1 and f2 are in L1(Ω), then we have a subsequence Tσ(j)(f1), Tσ(j)(f2)

whose weak solutions
(
v1σ(j)

)
j
, (v2σ(j))j satisfy

lim
j→+∞

∇viσ(j)(x) = ∇vi(x) a.e in Ω.

As before, we easily have∫
Ω

∆[v1σ(j); v2σ(j)]

1 + |v1σ(j) − v2σ(j)|2
dx 6

π

2

∫
Ω

∣∣∣Tσ(j)f1 − Ts(j)f2

∣∣∣.
Letting j → +∞, we get ∫

Ω

∆[u1;u2]

1 + |u1 − u2|2
6
π

2

∫
|f1 − f2|dx,

from which we get the uniqueness. ♦
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Springer-Verlag, Berlin, 2008.
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Poitiers,11 Bd Marie et Pierre Curie,Téléport 2, 86073 Poitiers Cedex 9, France

Email address: rako@math.univ-poitiers.fr, jean.michel.rakotoson@univ-poitiers.fr


