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Abstract 

Comparing, validating and assessing the accuracy of 

dynamic models is crucial for multiple applications in the 

field of energy, buildings and indoor environmental 

engineering. To that matter, various comparison metrics 

and key performance indicators have been developed or 

borrowed from other fields of science, and a few popular 

guidelines have recommended some of them for building 

energy models. 

This article aims at giving an overview of what metrics 

are used by the community of researchers in the field of 

energy, buildings and indoor environment. This overview 

is based on a large-scale review work of 259 scientific 

publications from the last 40 years. This paper also 

discusses the main trends, reveals certain gaps and 

suggests several research activities currently being 

undertaken by a multi-institutional working group of 

researchers, which should greatly benefit the entire 

community of building energy and indoor environment 

simulation. 

Highlights 

• Review of 259 publications about energy and building 

model testing, comparison and validation. 

• Overview of comparison metrics used by the building 

energy performance community to test, compare and 

validate numerical models. 

• Analysis of the most popular comparison metrics. 

Practical implications 

This review identifies clear trends in the practices of the 

building energy performance community regarding the 

testing, comparison and validation of numerical 

simulations. Popular comparison metrics are analyzed, 

and their shortcomings are pointed out. This analysis can 

guide researchers in selecting appropriate comparison 

metrics for numerical model validation and suggest future 

work for the development of robust validation methods in 

the field of building physics. 

Introduction 

Comparing, validating and assessing the accuracy of 

dynamic models is crucial for multiple applications in the 

field of energy, buildings and indoor environmental 

engineering. The output results of these dynamic 

simulations are most often in the form of time series. The 

quality assessment and validation of such dynamic 

models thus consist in determining how different the 

output result time series from a simulation are when 

compared to a reference time series (Johra et al., 2021). 

Such metrics and key performance indicators have been 

developed or adopted from other fields of science, and 

additionally, a few popular guidelines, such as the 

ASHRAE Guideline 14-2014, the IPMVP (2014) and the 

FEMP, M&V Guidelines (2015), have recommended 

some comparison metrics and criteria for building energy 

modelling testing and validation. Despite the clear 

importance and influence of such metrics on the model 

quality, no large-scale comparison review of them has 

been published to the best of the authors' knowledge, and 

thus discussions behind the choice of adequate 

comparison metrics are very seldom and not supported by 

data. One reason is presumably the human-labour-

intensive nature of such a task since there are no easy 

ways to automate the search and categorisation of 

equations in scientific publications, especially with large 

variations in the formulations, naming and acronyms. 

Such difference in definition, naming, and acronyms not 

only hinders an automated search but also increases the 

likelihood of misinterpretation of results by fellow 

researchers, exacerbates the risk of misunderstandings, 

and thus potentially hinders research. 

In other research communities, such comparisons exist. 

For example, Lepot et al. (2017) have recently compared 

metrics for interpolating time-series data, Prema et al. 

(2021) provided an overview and comparison of metrics 

for wind and solar power forecasting, while Hewamalage 

et al. (2022) provide a general overview for forecasting. 

However, the adequacy of comparison metrics might be 

greatly influenced by the dynamic properties of the 

evaluated time series, e.g., the sampling rate, signal 

amplitude, frequency spectrum, unit scale (e.g., K, °C, 

°F), or closeness to the 0 of such unit scale. An analysis 

of comparison metrics focusing specifically on the 

building physics and building energy modelling context 

and supported by data is thus important for the building 

industry and research community and the IBPSA 

audience in particular. 

This article aims to close this knowledge gap for the 

dynamic modelling of energy, buildings and indoor 

environment by providing an overview and discussions on 

comparison metrics that are based on the review of 259 



 

 

scientific publications over the last 40 years. Furthermore, 

main trends are discussed, gaps are revealed, and future 

research activities are suggested. 

All the references and data collected for this study have 

been compiled and curated and are available in open 

access (Johra et al., 2023). Additionally, a unified 

definition and notation for the 48 metrics found in the 

review process are provided in supplementary materials 

(Johra et al., 2023). The supplementary materials to the 

current study can be directly accessed here: 

https://doi.org/10.54337/aau533917780 

Combined with the provided overview and discussions, 

such unified notation and definition should greatly benefit 

the entire building energy simulations community. 

Scope and methodology of the current 

literature review 

The conducted structured literature review focused on 

scientific papers using deterministic building physics (or 

related) models for dynamic (time-dependent) variables 

such as temperature, energy demand, 

heating/cooling/electricity demand, CO2 concentration, 

relative humidity, fluid mass flow rate, or heat flow in 

building elements. 

The review focuses primarily on peer-reviewed scientific 

journals and conference proceedings in the fields of 

energy in buildings, and indoor environment, in which 

simulation result time series are being compared to 

reference time series (e.g., empirical reference data) or 

compared to other numerical dynamic model results. 

These time series comparisons are intended to assess 

model accuracy and/or validate the correctness (and thus 

usefulness) of a tested simulation model. 

The literature search covered both journal articles and 

conference proceedings. The Scopus database was used to 

search for documents in the field of building physics using 

the following keywords: building* AND energy AND 

“simulation” OR “model” AND compar* OR valid* OR 

accura* OR error. Based on a preliminary screening of 

the article content, the latter is added to the list of valid 

documents for thorough review and analysis or 

disregarded. In addition, searches were carried out over 

specific time periods to cover the last 40 years of literature 

in the field of energy and indoor environment modelling. 

Moreover, the proceedings of the IBPSA, NSB and IEEE 

conferences were specifically screened using similar 

keywords. 

 

Figure 2: Results of the Scopus search with keywords 

building* AND energy AND “simulation” OR “model” 

AND compar* OR valid* OR accura* OR error. 

Time series forecasting with probabilistic models is 

defined to be outside the scope of the current work but 

should naturally be included in further studies expanding 

this first research effort. Moreover, the included metrics 

Figure 1: Temporal distribution of the reviewed publications. 
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are always used for model evaluation but not for case or 

scenario comparison nor for model training (i.e., 

hyperparameter estimation in the training process). Model 

training methods might use other custom loss functions 

and specific assessment metrics that are out of the scope 

of this paper. 

Overview and statistical insights on the 

reviewed literature 

This section gives an overview of some key 

characteristics and certain statistical insights on the body 

of reviewed literature in the field of building model 

testing and validation. This can inform on modelling 

practices of the building energy and indoor environmental 

engineering research community. 

The analysed publications cover the last four decades so 

that a representative picture of the development and usage 

of metrics can be drawn. However, due to practical 

reasons and the recent massive expansion of the number 

of scientific publications in the field of building physics 

(see Figure 2), work before 2010 is underrepresented (see 

Figure 1). 

 

Figure 3: Overview of the different sources for the 

reviewed publications. 

One can see in Figure 3 that most of the reviewed 

publications are published in the peer-reviewed scientific 

journals Energy and Buildings, Applied Energy, Building 

and Environment, and the proceedings of the IBPSA 

Building Simulation conference. The other journals 

source category includes, e.g., ASHRAE publications, 

Energy Conversion and Management, International 

Journal of Heat and Mass Transfer, Journal of Solar 

Energy Engineering or Renewable Energy. The other 

conference proceedings source category includes, e.g., 

American Control Conference, Journal of Physics: 

Conference Series or Nordic Symposium on Building 

Physics. 

Figure 4 presents the distribution of the main topic of 

applications for the numerical models in the reviewed 

publications. More than half of the publications focus on 

the energy demand simulation of single buildings or 

clusters of buildings. This dominating trend can be 

attributed to the large interest, need and funding for 

estimating, forecasting and explaining the significant 

share of the total energy demand accounted for by the 

global building stock. 

 

Figure 4: Overview of the main application of the 

numerical models in the reviewed publications. 

As shown in Figure 5, the most popular modelling tools 

in the reviewed publications are Energy Plus, MATLAB 

(custom-made code or existing libraries/packages), 

TRNSYS, Modelica and IDA ICE. The other modelling 

tool category includes DIMOSIM, ENVI-met, PHPP, 

Radiance, COMIS or STAR-CCM+. 

 

Figure 5: Overview of the numerical simulation tools 

employed in the reviewed publications. 

One can see in Figure 6 that the majority of the simulation 

tools used in the reviewed publications follow a White 

Box modelling paradigm. 

 

Figure 6: Distribution of the modelling 

approaches/paradigms in the reviewed publications. 



 

 

This is clearly correlated to the modelling approach 

employed in the most popular numerical tools. The White 

Box approach also includes Computational Fluid 

Dynamics (CFD) and analytical solutions of heat and 

mass transfer equations. The vast majority of the Grey 

Box models in the reviewed studies are low-order 

Resistance-Capacitance (RC) networks. A large share of 

the Black Box models are Artificial Neural Networks 

(ANNs). There are also many linear regressions and auto-

regressive models like ARMA, ARMAX or ARIMA. 

 

Figure 7: Occurrence distribution of the different 

analyzed variables of interest in the reviewed 

publications. 

Figure 7 provides insights into what simulated variables 

are typically analyzed in the reviewed publications. One 

can clearly observe that, in the case of model comparison, 

the temperature of the indoor environment, outdoor 

environment and building systems are systematically 

analyzed in more than 53% of the publications. Different 

forms of energy demand (i.e., hourly, sub-hourly or daily 

heating energy, cooling energy and electricity demand) 

represent more than 52% of the analyzed variables, which 

is in line with the main modelling focus emphasized in 

Figure 4. 

If the energy demand is a common simulation result of 

interest (typically computed as Wh per hour or Wh per 

day), the heating, cooling or electrical power demand and 

peak demand (in W) are only compared in less than 10% 

of the cases. 

Results: trends in building modelling 

comparison metrics 

In this review study, the model comparison approach is 

systematically assessed for the different publications. One 

can see in Figure 8 that the researchers include a graphical 

display of the simulation result times series in 86% of the 

reviewed publications. In 29% of the cases, the model 

comparison is only based on a qualitative assessment in 

the form of, most of the time, overlaid time series figures, 

or sometimes boxplots or predictions-reference plots. 

These graphical qualitative model comparisons are thus 

often accompanied by a statement like “the model is in 

good agreement with the empirical data”. If this was 

common practice in the 80s, 90s and early 2000s, the 

absence of quantifiable indicators on how well this 

agreement really is, largely prevents proper 

reproducibility and comparison between studies. 

In 57% of the cases, however, the publication presents a 

graphical comparison of the model performance together 

with one or several comparison metrics. More seldomly, 

only quantitative comparison metrics are presented to 

justify the model’s accuracy without any graphical 

display. As the lack of quantifiable indicators was a 

drawback of the early studies, the lack of visual 

comparison may mask a poor fit (despite quantitative 

indicators). However, one should note that these results 

are highly skewed towards recent publications following 

2010. 

 

Figure 8: Time series comparison approach for the 

testing and validation of numerical models in the 

reviewed publications. 

When looking at the historical perspectives of these 

comparison practices, one can see in Figure 9 that there is 

a clear evolution in the reviewed publications: older 

studies (80s, 90s and early 2000s) tend to use only 

graphical qualitative assessment to report their numerical 

models’ adequacy. This practice has drastically changed 

after 2014 with the systematic use and reporting of 

quantitative accuracy performance indicators in the 

validation of numerical models for energy in building and 

indoor environmental engineering. 

This trend coincides with the publication of the ASHRAE 

guideline 14-2014, the publication of the IPMVP-Core 

Concepts (EVO, 2014) and the FEMP, M&V Guidelines 

2015, which provided benchmarking methods and the 

possibility for the building community to use a set of 

recommended comparison metrics for simulation result 

time series. 26% of the recent reviewed publications 

mention or refer to the ASHRAE Guideline 14. 



 

 

This current review study identified 48 different metrics 

for comparing simulation time series in the considered 

publications. The vast majority of these metrics are point-

to-point comparison ones, such as the Mean Bias Error 

(MBE) or the Sum of Squared Errors (SSE). These point-

to-point comparison metrics are usually simple to 

compute, but they assume perfectly synchronized time 

series data points and regular/constant sampling rates. 

This is a clear limitation when there is a certain offset 

between the test time series and the reference one, 

especially if there are multiple peaks in the signal (Johra 

et al., 2021). To overcome this limitation and tackle the 

risks of over-penalization of models in that situation, a 

few publications report time series elastic distances 

calculation and shape comparison instead of simpler 

point-to-point metrics. Examples of these elastic distance 

metrics and general elastic shape comparison found in the 

considered literature are the Dynamic Time Warping, 

dissimilarities based on Pearson's correlation, and the 

Frechet distance. 

In addition, some point-to-point comparison metrics are 

not applied directly to the entire time series of the building 

variable of interest but to a transform of that time series. 

For instance, Panão et al. (2016) compute the Mean 

Absolute Error (MAE) of the daily max of the time series, 

and Johra et al. (2021) calculate the Coefficient of 

Variation of Root Mean Square Error (CVRMSE) of the 

daily amplitude of the signal (from midnight to midnight 

each day). 

The systematic counting of the comparison metrics in the 

review publications (see Figure 10) reveals a clear 

dominating use of 7 popular metrics: 

• MBE: Mean Bias Error 

• NMBE: Normalized Mean Bias Error 

• MAE: Mean Absolute Error 

• MAPE: Mean Absolute Percentage Error 

• R2: Coefficient of determination 

• RMSE: Root Mean Square Error 

• CVRMSE: Coefficient of Variation of Root Mean 

Square Error 

The other less popular metrics with occurrence above 1% 

are: MaxAE (Maximum Absolute Error), MaxAPE 

(Maximum Absolute Percentage Error), NMAE 

(Normalized Mean Absolute Error), SSE (Sum of 

Squared Errors), MSE (Mean Square Error), RNRMSE 

(Range Normalized Root Mean Square Error), RMSEP 

(Root Mean Square Error Percentage), RMSLE (Root 

Mean Square Logarithmic Error), Pearson correlation 

coefficient, Spearman’s rank correlation and GOF 

(tailored goodness of fit function consisting in different 

combinations of other metrics like MBE, NMBE, RMSE 

and CVRMSE). 

 

 

 

 

 

Figure 9: Historical evolution of building model comparison practices in the reviewed publications. 



 

 

When focussing on the main variables of interest 

individually, the review reveals the following popular 

choices (sorted by decreasing order of occurrence 

frequency): 

• Energy demand or supply/production (Wh per 

year/month/day/hour): CVRMSE, R2, NMBE 

• Power demand (W): CVRMSE, RMSE, NMBE 

• Temperature (°C, °F or K): RMSE, R2, CVRMSE 

• Heat flow (W or W per m2): RMSE, MAPE 

• Moisture content (% relative humidity or kg per kg): 

R2, CVRMSE 

• Water consumption (L/m3 per year/month/day/hour): 

NMBE, R2, RMSE 

• Air pollutant (e.g., CO2 or VOC concentration): 

MAE 

• Daylight/glare discomfort: R2 

• Material properties: RMSE 

• COP (coefficient of performance) for HVAC 

systems: RMSE, CVRMSE, NMBE 

Discussions 

Before about 2014, there was a clear tendency that mainly 

qualitative model assessment was used based on time 

series graphs and a subjective definition that the model 

agrees well with the (validation) data. From about 2014 

on, a clear paradigm shift is visible towards using both 

qualitative and quantitative assessment, which can be 

seen as a significant increase in scientific objectivity and 

transparency. This trend also coincides with the 

publication of impactful international guidelines 

(ASHRAE guideline 14-2014, IPMVP-Core Concepts 

2014 and the FEMP, M&V Guidelines 2015), which 

provided benchmarking methods and recommended 

comparison metrics with validity thresholds for the 

building community. These guidelines are assumed to be 

one of the significant reasons for the frequent use of the 

MBE, NMBE, RMSE and CVRMSE. While these 

recommended metrics, combined with the suggested 

thresholds, eased the comparison between different 

simulation performance reports, they are no panacea. 

The MBE and NMBE indicate the global bias of the 

model (global under-prediction or global over-

prediction). However, these metrics are prone to 

cancellation or compensation effects: local biases in 

opposite directions compensate each other, i.e., local 

model under-estimations would compensate for local 

over-estimations, leading to a globally low MBE and 

NMBE despite large local discrepancies. Metrics based 

on squared differences (e.g., RMSE, CVRMSE) or 

absolute value of differences (e.g., MAPE) are not 

subjected to compensation effects. 

Metrics that are not normalized (e.g., SSE, RMSE) do not 

allow for the comparison of models on datasets of 

different sizes or with different unit scales. Normalized 

metrics should thus be preferred. However, certain 

normalized metrics have the same or similar names 

(usually comporting a “normalized” term) but actually do 

not use the same normalization logic. This is, e.g., the case 

Figure 10: Occurrence of the most popular time series comparison metrics in the reviewed publications. 



 

 

for the NRMSE (Normalized RMSE) that is actually 

normalized by the average of the reference time series in 

certain publications and is thus the same as the CVRMSE, 

but, in some other publications, the NRMSE is 

normalized by the amplitude of the reference time series. 

These misleading namings can cause severe confusion. 

Metrics based on the (squared) difference and normalised 

by the "total" mean (e.g., NMBE and CVRMSE) do not 

consider changes in the magnitude of a quantity over time. 

They are thus biased towards periods with higher 

magnitudes and, therefore, not necessarily suited in the 

presence of strong seasonal variation commonly found in, 

e.g., heating or cooling energy demand time series. 

Likewise, widespread metrics such as the RMSE, MAE, 

MAPE, and MBE suffer the same limitations and are 

biased towards high magnitude periods and, in the case of 

the RMSE, are sensitive to outliers/measurement errors. 

Certain metrics are very sensitive to values that are close 

to the 0 of the time series unit scale. This is highly 

problematic as building energy demand profiles for 

heating or cooling, when taken separately, are very likely 

to be at 0 for extended periods of time over the year. The 

RMSEP and the very popular MAPE are undefined if the 

data contains zeros. 

Certain comparison metrics are also very sensitive to 

outliers with significant over-penalization effects, which 

might not be desirable for global model validation. For 

instance, the CVRMSE emphasises large deviations (due 

to the squared difference) and can easily lead to poor 

reported accuracy if, e.g., outliers or measurement errors 

are present in the (validation) data. 

The RMSLE is less sensitive to large outliers, in 

comparison to, e.g., the RMSE, because it penalizes much 

less very large differences between the tested model and 

the reference when both the prediction and the reference 

are large numbers. However, the RMSLE penalizes more 

the model under-estimations than the model over-

estimations, which is not necessarily a desired feature for 

building applications. 

Regarding the definition and implementation of the 

popular metrics, it must be noted that the ASHRAE 

guideline 14-2014 recommends using n-1 (with n the 

number of samples) for calibration purposes. Yet the 

current review has found that both n-1 and n are 

commonly used in the research community. While this is 

expected to have a negligible impact for most cases, it 

highlights possible sources for misunderstandings, 

particularly if no clear definitions are provided, which is 

frequently the case. 

R2 is another very common comparison metric, yet one 

that is often misunderstood and misused. Indeed, there 

exist multiple definitions and formulations of R2, and they 

are not all necessarily equivalent, which can lead to 

significant interpretation mistakes (Kvålseth, 1985). In 

addition, R2 does not consider the model complexity and 

is biased toward high-magnitude periods. The problem of 

the model complexity can be overcome with the adjusted 

R2. Another practical issue is that some R2 

implementations in popular software (e.g., Scikit-Learn in 

Python) can take values below 0 if a model performs 

worse than the mean of the data would, which is not the 

case for other R2 definitions and implementations. This 

makes the comparison between studies possibly 

challenging. 

Finally, as mentioned in the previous section, point-to-

point comparison metrics can over-penalized models 

when slight time shifts of signal peaks are presented in the 

test datasets. This behaviour might not be desirable and 

could be tackled by computing elastic distance and shape 

comparison metrics. 

Conclusion and suggestions for future work 

In this work, 259 scientific papers from energy, buildings 

and indoor environment modelling have been reviewed 

and analysed regarding their used model evaluation 

metrics and approach. 

Overall, the collected comparison metrics vary in their 

definition, notation and abbreviations between research 

papers, leading to possible confusion, misinterpretation of 

results and misunderstandings. Thus the modelling 

research community should bundle efforts to establish 

universal names and definitions. Furthermore, the revised 

metrics made it obvious that currently, the recommended 

and most commonly used metrics suffer from various 

flaws, such as bias towards periods with higher magnitude 

for quantities with strong seasonal variation, outlier 

hyper-sensitivity, compensation effect, or impossibility to 

compute when the considered variables are equal to zero. 

Thus future research efforts should focus on establishing 

more robust comparison metrics adapted to the signal 

features of specific variables of interest and with clear and 

unambiguous definitions. 

The key conclusions from this study and 

recommendations for model comparison in the field of 

building physics can be summarized as follows: 

• Qualitative comparison with time series graphical 

visualization should always be included with 

different time scales and with good readability 

(choice of colours and markers) 

• Normalized metrics are prefered over absolute 

metrics for quantitative comparison. 

• The equation of the used metrics should always be 

provided along with the evaluation period, and 

information on the data treatment for zero-values 

• For error evaluation, CVRMSE, RMSE, MAPE and 

MAE are commonly used metrics 

• For bias evaluation, NMBE and MBE are commonly 

used metrics 

• Elastic distance metrics (e.g., Dynamic Time 

Warping or Frechet distance) should be considered 

for further analysis 

The review and analysis work presented in this paper has 

led to a unified and coherent definition and notation for 

the 48 reviewed metrics (Johra et al., 2023). These 

different metrics will then be systematically tested with 

well-defined datasets from building physics. This will 



 

 

thus allow identifying similar behaviour and pitfalls 

among the reviewed metrics and thus guide practitioners 

in the selection of adequate comparison tools for specific 

types of time series generated by building models. 

Finally, this review has explicitly focused on 

deterministic models. Hence probability-based models, 

which have become increasingly popular, and forecasting, 

should be included in further extensions of this work. 
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