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Abstract

Borel’s technique of divergent series resummation is transformed into a nu-
merical code and used as a time integration scheme. It is applied to the
resolution of regular and singular problems arising in fluid mechanics. Its
efficiency is compared to those of classical discretization schemes.
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1. Introduction

The resolution of many evolution problems in fluid mechanics, such as
an unsteady flow, requires a long computation time because the time step
allowed by the numerical scheme is generally very small. For example, the
Euler explicit method can be applied to the resolution of a diffusion problem
only under a very restrictive stability condition on At. This time step can be
increased with an implicit method, but with the cost of a matrix inversion at
each time step. Moreover, many standard discretization schemes give only
snapshots of the solution at each time step but not its continuous evolution.
These shemes may then miss fast variations or fluctuations of the solution.
An alternative to these schemes is the decomposition of the solution into a
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time series. When the non-linearity of the problem is algebraic (it is the
case of the Navier—Stokes equations), this procedure transforms the initial
problem into a cascade of linear and explicit problems. The approximate
solution is then valid, not at discrete time steps, but in a whole interval,
corresponding to the (numerical) radius of convergence of the series. To reach
high values of ¢, a continuation procedure is applied, that is, the problem is
solved again with the last valid solution as initial condition. The solution is
then computed branch-wise. In the whole process, at most one matrix has to
be inverted. One other important advantage of the series decomposition is
that it gives the asymptotic behaviour of the solution when a blow-up in finite
time occurs. These blow-up may arise with the Navier-Stokes equations.

The series decomposition method, called also perturbation or asymptotic
method, is particularly efficient in the detection of bifurcations and the com-
putation of bifurcation branches [8, 51, 47]. Numerically, it gave rise to the
Asymptotic Numerical Method (ANM) [17] which has been used succesfully
in solid mechanics [20, 21, 12, 11]. In fluid mechanics, the series decomposi-
tion method has been used for the detection of steady bifurcations [14, 58, 15],
Coanda effect [3|, automatic branch switching [31] and convection problems
[44]; the decomposition parameter is, for instance, the Reynolds number.

For the detection of unsteady bifurcations, the decomposition parameter
has to be the time. However, a time series decomposition may lead to very
small radius of convergence. For example, with a well-behaved initial con-
dition, the radius of convergence of a time-series solution of the discretized
Navier-Stoke equations decreases quadratically with the grid size (see ap-
pendix). In the continuous case, the radius of convergence may even be zero.
This behaviour can more easier be understood with the heat equation:
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Series (3) diverges factorially for all x [36] even if the initial condition is
analytical. In order to obtain an actual solution, the series has then to be
“resummed”.

The most promising tool to resum divergent series is the Borel-Laplace
resummation method [9, 10]. This technique is a theoretical procedure which
associates to the given (eventually divergent) series an (sectorial) analytic
function having the series as asymptotics. And if the series has a non-zero
convergence radius, the resummation can be understood as a prolongation
procedure outside the convergence disc (see section 3.1). The method is based
on the usual Laplace transformation and its inverse, the Borel transformation.
Its limit is that the series must be a Gevrey series, i.e. must not “diverge
faster than a factorial series”. Fortunately, as proved by Maillet [39], formal
series which are solution of an algebraic ODE are a Gevrey series. This result
has been extended by Malgrange [41] to analytic non-linear ODE’s. For
PDE’s, the theory is not so complete. In fluid mechanics, some equations,
such as the heat equation (and some generalization) and the Burgers’equation
has been investigated [38, 37, 46, 6, 7]. For the Navier-Stokes equations,
Costin et al. recently gave summability conditions to the formal power series
[18].

Introduced in the late 19th century, Borel’s resummation technique has
regained popularity these last three decades. The works of Ecalle on resur-
gent functions and on accelero-summation [26, 27, 16|, and those of Ramis
and Malgrange on multi-summability [42, 43] opened many extension per-
spectives to the initial theory and the way to more and more applications in
mathematics and theoretical physics.

Since all the transformations involved in the asymptotic method and in
the resummation process are formal, Tounier, Ramis and their collaborators
[57, 24] built a solver of regular and irregular ODE’s, called DESIR, which
integrates the resummation technique. Although giving exact solutions, this
solver may require too much computer ressource in engineering science, where
problems are generally of very high order and requires many time steps. At
best, they should be combined to a numeric code. Based on the concept
of Newton polygon [40, 49|, DESIR deals moreover essentially with linear
equations (despite some attempts towards the non-linear case [25, 54]).

This article aims to propose a time integration scheme for the resolution
of multi-dimensional evolution problems in fluid mechanics, based on the per-
turbation method (ANM), and associated to the Borel series resummation
method to widen the range of validity of the solution, making thus the algo-



rithm much faster. This scheme gives as output an analytic function in time.
Inheriting from the properties of the perturbation method, it can eventually
be used for numerical detection of unsteady bifurcations. Note that the re-
sommation is applied component-wise. This facilitates the parallelisation on
multi-processor computers.

Since the resummation method is still almost unknown in the domain of
numerical analysis, we give, in the next section, a minimalist reminder of the
basic definitions. We then transform the method into a numerical algorithm.
In section 3, we analysis the method with the light of some toy examples.
In section 4, we show that the resummation method is a good alternative of
the adaptative Runge-Kutta method, in the sense that it requires less time
steps, for the resolution of ODE’s in fluid mechanics. We end up with the
numerical resolution of the discretized heat and Burgers equations.

2. From theory to numerical algorithm

Maillet’s theorem [39] states that if a formal series @ is a solution of a
differential equation with analytical coefficients, then it is a Gevrey series (see
definition in 2.1) of some index m. Next, the fundamental theorem of Gevrey
asymptotics [50] ensures the existence of an holomorphic function which is
asymptotic to @ in some sector, in the Gevrey sense. This function is also a
solution of the differential equation. These two theorems guarantee, at least
theoretically, the possibility to convert a formal series into an holomorphic
function which is a solution of the same problem. The Borel resummation
method consists in computing effectively this function, which is its m-Borel-
sum.

In this section, the basic tools needed for the application of the resum-
mation procedure are introduced and some illustrative examples are given.
However, only the case m = 1 is considered in this article. Note that any
Gevrey series of index m € N can be reduced to a sum of Gevrey series of
index one.

For more complete definitions, the reader can refer to Borel and Gevrey’s
works [9, 30| and to more recent papers on divergent series |8, 50, 48, 29].

2.1. Basic definitions

The Gevrey asymptotic theory is a restriction of Poincaré’s (standard)
asymptotic theory [23]. A Gevrey asymptotic expansion is defined as follows.



DEFINITION 1. A function u(t) is asymptotic, in Gevrey sense, to a power

series U = Zuktk at the origin in a sector S if, for any compact subsector

k>0
T C S, there exists two constants C' and A such that

-1

u(t) — Z ut”

k=0

Vi>1, VteT, < CA"It|'1 . (4)

When it is the case, we write, within this document:

G
~

U . (5)

A Gevrey series is a power series which have the same factorial growth as
the right-hand side of (4). More precisely,

DEFINITION 2. A formal power series i = Z ugt” is called a Gevrey series
k>0
if there exists constants C; A € R such that
lu| < CAFE! Vi > 1. (6)

If 4 is a Gevrey series, then its Borel transform

Bi=Y —=¢ eCl] (7)

is analytic at the origin.

For an angle 6, we denote Hy the set of functions which are holomorphic
at the vicinity of the origin and in a direction dy = [0,e? o[, decaying
exponentially at infinity.

DEFINITION 3. The Laplace transform of a function P € Hy in the direction
dg 18

e? o

LoP(t) = /U (&)t i, (8)

Ly P is defined in a sector bisected by dp.

Transformation (8) is the formal inverse of the Borel transformation (7)
since, formally, uy + LoBu = U (up has been skipped by the Borel transfor-
mation and must be put back). The Borel sum can now be defined.
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THEOREM 4. If, for an angle 8, Bu can be prolonged into a function P € Hy

then there exists a function Sy, analytic in a sector of opening > w bissected
by dgy, such that

Sett % a. (9)

In this case, the formal series U is said Borel-summable in the direction dy.

The Borel sum Syt verifies
Sgﬂ = Ug + £9P.

The dependence of the Borel sum on the direction dy is related to Stokes
phenomenon [33].
In summary, the Borel resummation of a Gevrey series @ consists in

e computing the Borel transform B,
e extending Bu into a function P € Hy in Borel space,
e returning to the physical space with the Laplace transformation.

And if @ is a formal solution of a differential equation then its Borel sum is
an analytic solution. These three steps are summarized in Table 1.

a(t) = uyt LoBi(t) = ug + / P(€)e™¢/t de
k>0 dg
Borel Laplace

Bu(¢) = Z% ¢F Prolongation> P(&) € Hy
E>0

Table 1: Resummation steps

Let us illustrate the resummation method with some examples.



2.2. Examples
Consider the Euler equation:

du
P — tu=t. 10
3 T (10)
The power series
=) (—1)"KlH (11)
k>0

satisfies formally this equation. Since (11) is divergent, a non-optimized
perturbation-method-based algorithm such as ANM would not give any an-
alytical solution. The Borel transform of series (11) is

P S e

k>0 k>0

This series can be naturally extended into the analytic function P : £ €

1
C — {—1} = ——. Hence, the Borel sum of 4 is

1+¢
/+OO L e de. (12)
o 1+¢

In summary, from the divergent series (11), the resummation method pro-
vides the solution (12) of equation (10) which is analytic in the complex
half-plane where the real part of ¢ is positive.

In the following example, we consider a problem whose series solution is
convergent. We then show that, in this case, the resummation method can
be understood as a prolongation method.

Consider the non-linear initial value problem:

du+ 2=0

2=

dt (13)
u(0) = 1.

The formal series solution is:

=Y (—1)* (14)
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which is convergent inside the unit disc. The Borel transform of (14) is

_1\k+1
Z% ¢k, (15)

k>0
We recognize in (15) the Taylor expansion of the function
£ —e (16)

that we take as a natural prolongation. The Borel sum is the rational fraction

' §,—¢/t q¢ — 1
1 et dE = . 17
/0 e ~€ § 1+¢ (17)

This is the analytic solution of problem (13) in C — {—1}. This function ex-
tends the series (14) outside its convergence disc. Of course, in this particular
case, Padé approximants would give the same solution.

In the next section, the resummation technique is transformed into an
algorithm for a numerical use.

2.3. Algorithm

On the numerical point of view, the formal power series, obtained with
an asymptotic method, is truncated at some order. In the case of partial
differential equations, the series coefficients are functions of one ore more
variables.

Computing the Borel transform Bu presents no particular problem. How-
ever, unlike in the linear case, it is not easy to find a differential equation
verified by Bu. Consequently, the singular directions of Bt are not known a
priori. For this reason, we choose 6 = 0.

The prolongation in Borel space is materialized via the classical Padé
approximants [13]. This choice is motivated by the good ability of this tech-
nique to approximate and extend the domain of validity of a series. Another
advantage of the Padé approximants (which is not used here) is its ability to
detect the singularities of a function through the poles of the rational frac-
tion. Note however that for a high-dimensional problem, typically in fluid
mechanics, this method is time-consuming and has to be optimized.

Other prolongation methods are proposed by Thomann in [56] but they
are designed for linear equations.



The Laplace transform is computed using Gauss-Laguerre quadrature [32,
34], which is arbitrarily precise. Six Gauss points are used in the numerical
applications. The consistency order can be defined as the truncation order
of the initial series, in the sense of (4).

The algorithm is summarized in Table 2.

l
it = it LaBil(t) = o+ [ P(e)e ¥ dg
k=0 RT
Borel Gauss-Laguerre
-1
—_— Ag+ A+ -+ Ay €M
Bil =S 2 ¢k T pade | P(e) =2 1 mé

k!

p L+ Bi§+ -+ + By, &N

Table 2: The numerical algorithm

3. Numerical experiments and continuation procedure

Consider equation (13), which is not an example on which the maxi-
mum profit of the resummation can be made since it does not present any
irregularity at the origin, but which has a quadratic non-linearity like the
Navier-Stokes equations. The exact solution is

1

14+t

3.1. Resolution of equation (13)

In a first test, the solution given by the perturbation method is compared
to that provided by the association of the perturbation method and the
resummation method. The series solution is computed up to order [ = 8. The
result is represented graphically on Figure 1. As observed, the resummation
method brings a very significant improvement to the perturbation method.
In this case, the range of validity is multiplied by more than 3.5. Note that no



Exact solution

— = = Peturbation -

—. == Perturbation- 1
resummation

Figure 1: Solutions with and without resummation

optimization operation such as convergence acceleration nor an optimization
of the quadrature was performed in the algorithm.

Theoretically, the resummation method should lead to the exact solution
until the infinity (see subsection 2.2) but since the initial series was truncated
and no optimization was done, numerical effects become non-negligible for
large values of ¢.

In order to reach higher values of ¢t with a good precision, a continuation
procedure has to be done.

3.2. Algorithm with continuation procedure

The accuracy of the approximated solution is appreciated in term of
residue, which is defined as

du
Res(t) = E(zt) + u*(t). (18)
. . _ ) du )
The evaluation of (18) necessitates an approximation of —. With the re-

summation method, this can be done by quadrature method since

du 1 [
— =/ P A3
=), PO

The algorithm, called PERT+RESUM-+CONT, which combines the pertur-
bation method, the resummation technique and the continuation procedure
can be described as follows.
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a. (PERT) The truncated series

l
IALZZ E uktk
k=0

is computed using the standard perturbation method, with the initial
condition ug = u(tp). This provides an analytical (actually polynomial)
approximation of the exact solution as long as the following relation

holds:
Res(t
IRes(l _ o)
lat @)
where ¢ is a small parameter and |[«|| is the usual Euclidian norm. Let
t1 be the last computed values of ¢ for which condition (19) holds. t;

is equal to zero if the series is divergent.

b. (RESUM) Next, the Borel sum Syd' is computed. This provides an
analytic approximate solution for t € [t1,ts] where ¢, is the last value
of t for which the relative residue is smaller than ¢, that is:

[ Res(t)]|
e < € (20)
[1LoB(a)(1)]]

c. (CONT) When t; is reached, a continuation procedure is performed.

This mean that the algorithm is run again with, in step a., (to, u(t2))

as new value of (to, up).

This algorithm is compared to the classical ANM wich is composed of
steps a@. and c. (t; = t1), and which will be refered to as PERT+CONT.
These two algorithms are applied to equation (13) in the next section.

3.3. Equation (13), with continuation procedure

The computation is carried out up to ¢ = 10, with [ = 8 and € = 1072,

Figure 2 shows the approximate solutions. Visually, the exact solution
cannot be distinguished from the computed solutions and is not presented.
Left is the approximate solution without the resummation procedure. The
bold points (e) represent the points where a continuation procedure is needed
(the abscissa of these points correspond to the ty’s). On the right side is the
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Figure 2: Approximated solutions with continuation; a) without resummation, b) with
resummation

approximate solution with the resummation procedure. The solid lines cor-
respond to the part of the solution obtained in phase a. of the algorithm
and the dashes to phase b. It can be observed that the resummation pro-
cedure prolongs well the solution provided by the perturbation method such
that much less continuation steps are needed. Indeed, only two continuation
points are required to reach t = 10 when the resummation method is applied,
versus eight when it is not.

The above results correspond to a truncation of the series at order [ = 8.
Table 3 compares the number of continuation points with [ = 8 and [ = 15.
For | = 15, a very significant diminution of the number of continuation points
can also be observed when the resummation procedure is used.

=8 =15

PERT-+CONT 6 points 5 points
PERT+RESUM-+CONT 2 points 1 points

Table 3: Number of continuation points for equation (13)

These tests permitted to check that, numerically, the resummation tech-
nique improves to the performance of the perturbation method regarding the
number of continuation points.

Before considering more realistic problems, let us take a last simple exam-
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ple, whith periodic solution. The analytical solution is know; that permits to
analyze the method accuracy and efficiency in terms of computational time,
compared to classical time integration methods.

3.4. A simple periodic problem

Consider the equations:

% (g) _ (? —01> (Z) w(0) = 1, v(0) — 0. (21)

(u,v) describes the unit circle. Since the exact solution is known, the
maximal relative error of each method can be computed. In this subsection
(and only in this one), the quality criterion (20) based on the residue is
replaced by another one based on the actual error. The solution is computed
within one period (27).

Table 4 displays the number of steps needed by the resummation method
and some classical ones, for given precisions. We observe that the resum-
mation method needs much less steps compared to the usual Euler explicit
method and the 2nd and 4th order Runge-Kutta methods. For a precision
of 1079, the resummation method requires about 10 as less time steps than
the 4th order Runge-Kutta method.

Precision Explicit RK2 RK4 Resum.

1072 1904 65 10 3
1073 19042 199 17 4
1074 190400 629 30 5
10-¢ 1.9 10" 6284 96 9

Table 4: Number of steps needed to reach ¢ = 2m; with explicit Euler method (Ex-
plicit), 2nd-order Runge-Kutta method (RK2), 4thorder Runge-Kutta method (RK4) and
PERT+RESUM+CONT algorithm (Resum.).

The data on Table 4 are plotted on Figure 3 with logarithmic scales and
increasing precision. It can be stated that the resummation method has the
smallest slope. Note that the since the explicit method would zoom it out
too much, it has not been included in the figure.

The CPU times are reported on figure 4 with logarithmic scales. These
values were obtained with an imposed precision of 107% and final times t,,4, =
1,2,10, 100 and 1000 times the period. Asshown, the 4-th order Runge-Kutta
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Figure 3: Number of steps needed to reach t = 27. See Table 4 for legend.

and resummation methods are comparable in terms of computation time, for
small t,,,.. By contrast, for large ¢,,.., the gain is clear. For example, to
reach 1000 periods with a precision of 1075, the resummation method requires
7.2 107! CPU time, that is 59 times as less than RK4 (4.3 CPU time).

Contrarily to the above examples, the exact solution is not known in real
situations and the error of the integration methods is not available. So, in
the next cases, comparisons will only be in term of step number. However,
in the light of the above example, it is likely that the CPU time increases
with the step number.

In the sequel, we consider equations related to fluid mechanics problems,
starting with a reduced model of the Navier-Stokes equations for the simu-
lation of realistic fluid flows.

4. Reduced model of the Navier-Stokes equations

Consider an incompressible Newtonian fluid of density p and kinematic
viscosity v. The motion of this fluid is governed by the Navier-Stokes equa-
tions

ou ) 1
5 + div(u ® u) = ——Vp + vAu
’ (22)

divu =0
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Figure 4: Evolution of CPU time. On the abscissa: 4. /27.

where u and p are respectively the velocity and pressure fields. It can
be shown (see appendix) that a time series decomposition of the space-
discretized solution of (22) leads to a very small radius of convergence, which
decreases quadratically with the number of space grid points. This justifies
the use of the resummation method as a prolongation procedure. However,
in this exploration phase, we will not deal with the whole Navier-Stokes
equations but with a reduced model.

Instead, equations (22) are reduced into a dynamical system, using the
Proper Orthogonal Decomposition (POD) method which consists in project-
ing the velocity field v on an optimal basis (<I>i)1'=1,.,,,oo, composed of divergent
free functions (see [35], [55], [4]):

—+00

ult, ) =Y d'(t) (). (23)

i=1
The components ¢° of u will be called the modes. The basis functions are
generally determined either numerically or experimentally and depend on the
flow configuration.

In practice, the expansion (23) is truncated at an order m. This leads to
the following reduced model of the Navier-Stokes equations:

in @ PN - i i .

J,l=1
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Figure 5: Geometry of the driven cavity

where () and L are known tensors depending on the basis functions. A
property of POD method is that very few modes are enough to capture
almost the whole energy of the flow. The term F* contains the pressure and
can be vanished, by means of a suitable change of variable, in some cases,
such as the followings.

The first test is carried out on an air flow inside a two-dimensional driven
cavity, presented on Figure 5. The horizontal lid velocity is U,y = 0.15 ms™".
The basis functions were computed numerically. They are not presented here
but can be found in [1].

Equations (24) are solved using the perturbation-resummation algorithm
(PERT+RESUM-+CONT). Its performance is compared to those of the classical
adaptive 5-order Runge-Kutta method in terms of number of time steps. The
Runge-Kutta step is chosen such that the estimated value E' of the truncation
error verifies the following relation:

£ < (25)
<e
le(@)]
where @ = (¢');. € is the same error parameter used in (19) and (20). Note
that the resummation method has an arbitrary order, determined by [ (see
(4)).

[ is set to 10. The Laplace direction is the positive real axis (it is then
assumed that the Padé approximants have no pole on this axis). Four or
ten modes (m = 4 or 10) are computed. The first two modes are presented
on Figure 6 up to t = 20s. A projection on the basis (®%); of a numerical
solution of the Navier-Stokes equations is used as a reference solution.
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It can be observed on Figure 6 that the algorithm PERT+CONT-+RESUM
gives approximately the same numerical results as the Runge-Kutta method
at the points where a Runge-Kutta solution is available. The difference
with the reference solution is due to the POD reduction (errors introduced
by the computation of the ®"’s and the truncation of the expansion (23)).
Stabilization procedures exist to attenuate the POD modeling errors (see
for example [53, 19]) but not used here. The difference with the reference
solution is then independent of the performance of our two algorithms.

Figure 7a) compares the number of steps needed to reach 20, 50 and
100 seconds for m = 4 modes (I = 10). It shows that the perturbation-
resummation method requires much less steps than the Runge-Kutta method,
about 35% less to reach 100 seconds.

The gain of the perturbation-resummation method increases with the
number of modes. Indeed, as observed on Figure 7b) with m = 10 modes,
the perturbation-resummation method requires about 42% less continuation
steps than the Runge-Kutta method to reach 100 seconds.

From the above results, it can be concluded that the perturbation-resum-
mation method gives the same approximate solution as the Runge-Kutta
method, but requires less steps. These results also show that the perturbation-
resummation method can be used for the simulation of realistic problems.
Finally, the gain of the resummation method increases with m. It suggests
that it is more attractive, compared to the Runge-Kutta method, for the
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Figure 7: Evolution of continuation step numbers

resolution of high order problems such as the discretized Navier-Stokes equa-
tions.

Since the reconstituted flows obtained from the perturbation-resummation
method and from the Runge-Kutta method are qualitatively the same, they
are not presented in this article but are avalaible in [1].

Another test is carried out on the flow inside the 2D ventilated room
presented on Figure 8. This geometry is used in [2] for the study of pollution
in buildings. For this geometry, the inlet and outlet heights are 0.31m. The
inlet is at 0.07m from the ceiling and the outlet 0.07m above the floor. The
inlet velocity is 0.443m/s.

Inlet T

w ¢z

I Outlet

25m

Figure 8: Geometry of the ventilated room

A first simulation is done until the flow is stable. Then, a particle cloud
is injected. The details of the simulation can be found in [2] and will not
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be reproduced here. Our interest is the comparison of the perturbation-
resummation method with the Runge-Kutta method.

The reduction of the equations is particularly interesting in this case
because the simulation of particle evolution requires a very small time step if
the equations are directly time discretized. The equations are reduced with
POD, with m = 4 modes. Figure 9 presents the number of steps needed by
the two methods 20, 30 and 100 seconds after the injection of the particles.
Also for this flow, the perturbation-resummation method requires less steps
than the Runge-Kutta method, about 44% less to reach 100 seconds. The
reconstituted flow can be found in |2, 52].

400 F

Runge'-Kutta
350 | Resummation --------

step number
n
o
o
T

Figure 9: Number of continuation steps for the ventilated room

These numerical tests show that the resummation method may be a good
alternative to the Runge-Kutta method, for the resolution of ODE’s arising
from realistic problems. In the next section, we apply the resummation
algorithm to discretized PDE’s.

5. Application to the heat and to Burgers’ equations

Consider the inital-valued heat equation

ou 0%u

a = I/@ (t,l’) S [O, +OO[XQ

u(t =0,x) = up(x)
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where v is the thermal diffusivity coefficient. If 2 = R, the coefficients of the

formal solution
=Y ug(x)t" (27)

£>0
verifies )
d U
(k+ Dkt = vg (28)
that is
42
uy, = =2 (29)

k!’
The formal solution diverges unless ug is an entire function of exponential
order at most 2 (see [36]), that is

[ug(2)| < C e (30)

for some positive constant C' and a. Series (27) is Borel summable under some
conditions on ug. For instance, the solution (27) is summable in a sector of
opening > 7 if and only if ug is analytic in a double cone and verifies (30)
[36], or if ug is a formal series with certain summability properties [5].

In practice, Q is a bounded domain and equation (26) is associated to
boundary conditions. Herein, Dirichlet boundary conditions of the type

u(t,0) = u°, u(t, L) = u” (31)

are considered. For the numerical resolution, equations (26) is space-discretized
with centered finite difference. This leads to the following equation:
dut wil — 200 4 yit!

E - Aan 5 Z - 1, N (32)

where N is the grid size. 32 Gauss points are taken for the Laplace transfor-
mation.

Since no matrix inversion is needed with the resummation method, the
algorithm PERT+RESUM+CONT can be considered as an explicit method,
and is compared to the Euler explicit method in this section. Recall that
with the Euler explicit method, the time-step must satisfy the very restrictive

stability condition
2

Az

v
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For the resummation method, we define a “time step” Aty as the maximal
value of ¢ up to which Syu(t) is a good approximation of the solution and at
which a continuation procedure must be performed. More precisely,

At =ty — 1o (34)

where the t;’s are defined in section 3.2. The question is how big Atg is
compared to Atg. If At >> Atg, the algorithm PERT+RESUM-+CONT is
potentially faster than the Euler explicit method.

Two test cases, corresponding respectively to a convergent and a divergent
formal solutions are carried out.

5.1. Heat equation with convergent solution series
In this subsection, we take v = 1, = [0, 7] and

u(0,z) =sinz (35)
The exact solution is
u(t,r) = e 'sinx (36)

Q) is discretized into an uniform grid of size N = 16. The computed solution
is presented on Figure 10 for ¢ ~ 3s. It shows a good agreement with the
exact solution. The maximum time step with an Euler explicit method would

005— ++++ .

0.04 - ¥ * B

0.03 - Approximate  +

Exact

0.02 A

0.01—+ + 7

Figure 10: Approximate and exact solutions at ¢t = 2.98s

be Atg = 1.7 1073. First values of Atg, with truncation orders [ = 10 and
[ = 20, are shown on Table 5. It can be observed on it that the first time step
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is much bigger than the next ones. Atg then stabilizes from the second step.
Only some values are reported on the table. The last column corresponds to
the mean of the 20 first values. It can also be observed that Aty is between
40 and 800 times larger than the time step limit Atg of the Euler explicit
method when [ = 10, and between 95 and 900 times larger than Aty when
[ = 20.

step1 step 2 step 3 step 4 mean (20)

=10 1.4 891072 9.6 1072 9.6 1072 1.6 107!

=20 1.8 1.81071 1.9 107! 1.9 107' 27 107!

Table 5: Time steps with the algorithm PERT4+RESUM-+CONT
N =16 (Atg ~2 10_3)

Figure 11, left, presents the mean values of Atg, with N = 16. It can
be observed that Atgr grows almost linearly with the truncation order [. For
[ = 10, the right-side of the figure shows that Ag decreases quadratically
with the grid size, as Atg does. We have:

0.2 T T T IR T

0.35 E

03 E 0.15 -\ i
N 0.25 - B 4% \
2 o 01r 4
o 02} g g
£ =

0.15 - B 005 L 1

01 i

0.05 | | | | | 0 L L L

o 5 10 15 20 25 30 50 100 150 200 250

truncation order grid size

Figure 11: Evolution of mean Atg, left: with the truncation order [, right: with the grid
size N and compared to 100Atg
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5.2. Heat equation with divergent solution series

For the last test on the heat equation, we take as initial condition the
function proposed by Lutz et al in [36]:

u(t=0,z) = 1i$ (38)

We set the domain to [0, 1/2] such that function (38) is C*° inside the domain.
The behaviour of the approximate solution for some values of ¢ is sketched on
Figure 12. It shows no weird behaviour. Yet the solution series is divergent,
as mentionned in introduction.

2

1.9

1.8

1.7+
16 |
15|
141
13 |

12 |

11

1 1 1 1 1 1 1 1 1 1

0 005 01 015 02 025 03 035 04 045 05

Figure 12: Behaviour of the approximate solution corresponding to initial condition (38)

The goal of this test is to explore numerically the limit of the classical
asymptotic method and to confirm the efficiency of the resummation tech-
nique for such a problem. The grid size is N = 16. The time step of the
classical asymptotic-method algorithm PERT+CONT is

AtA:tl—t():tg—t(] (39)

where tg, t; and ty are defined in section 3.2.

Figure 13 shows the evolution of the mean (over the first 20 continuation
steps) of Atg and At, , when the truncation order is increased. First, we
notice that the time step is always larger when the resummation procedure
is applied. Next, we observe that, even if it is divergent, the series gives a
satisfying approximate solution when only small number of terms are consid-
ered (I < 71). This is the principle of least term summation. But when the
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truncation order exceeds the limit [ = 71, the classical perturbation method
become inefficient. The numerical radius of convergence is zero.

0.009
0.008 -
0.007 |
0.006 |-
0.005 |-

0.004
0.003 | '
0002 - .7 .
0001 |- : .
0 | | | R &
0 20 40 60 80 100 120
Truncation order

Mean time step

Figure 13: Evolution of the mean time step with the truncation order with algorithms
PERT+CONT (At,4) and PERT+RESUM+CONT (Atg)

For a bigger problem, for example, when the number of grid point is
raised, the critical value of the truncation order decreases. This behaviour
is illustrated on Figure 14, where the grid size is increased up to 256. This
shows that the resolution of such big problems with the perturbation method
without resummation must be limited.

75 T T T T T

70 - 1
65 - 1
60 B

55 |- -
50 - -
45 -
40 - .
35 - -

30 1 1 1 1 1
0 50 100 150 200 250 300

Grid size

Critical truncation order

Figure 14: Decay of the truncation order limit (heat equation)

As it can be observed on Figure 13, Atg undergoes a stagnation around
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the critical truncation order but never goes to zero like At 4. It even increases
again with [ beyond the limit [ = 71.

Lastly, we consider Burgers’equation, which is the one-dimensional equiv-
alent of the Navier-Stokes equations.

5.8. Application to Burgers’ equation
Consider the Burgers’equation with an initial condition:

(40)

Without boundary conditions, the coefficients of the formal solution are re-
cursively linked by the relation

dQZLk k duk,p
(k/‘ + 1)Uk+1 = I/W — ZUPT (41)

p=0

For v = 1, this relation implies

1 2k — - I, YOO
uk = o <ué P Y ()Y (42)
p=0

J=0

Unlike that of the heat equation, the analycity and exponential growth con-
ditions on the initial data ug is not sufficient to ensure the convergence of the
formal solution of the Burgers’equation. On the other hand, it is shown in
[38] that if ug is analytic, then the formal power series solution is a Gevrey
series of order 1.

For the numerical test, we take the same initial data and boundary con-
ditions as in section 5.2. The formal solution diverges factorially. As seen on
Figure 15, the critical truncation order for ANM arises sooner than with the
case of the heat equation for small values of N. But for large N, we have
approximately the same limit values.

6. Conclusion

We showed that the resummation method may be a good alternative to
the Runge-Kutta method for the resolution of ODE’s and to the classical
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Figure 15: Decay of the truncation order limit (Burgers’equation)

discretization methods (Euler, Runge-Kutta) for the resolution of PDE’s in
fluid mechanics. For the Navier-Stokes equations, it may become a very
interesting tool for the analysis of the behavior of the solution near a blow-
up time. Note that for these equations, Costin et al. gave Borel-summability
conditions of the formal solution and results on the existence of local and
global classical solutions [18].

The resummation algorithm seems to be more interesting with large prob-
lems. Indeed, the number of steps increases more slowly with the size of the
problem, compared to classical methods. But independently of the size, the
resummation method appears to be more efficient, both in term of time steps
and CPU time, for a long-time problem.

The efficiency can be increased significantly by optimizing the algorithm.
For example, the computation of the residue takes an important part of the
CPU time in the resolution. Another technique should be used to evaluate the
error. Relation (4) can be used to this aim. Note that for the perturbation
method and Padé approximants, such methods exist [28]. Other methods
for the effective computation of the Borel sum, such as with factorial series
[22] or the (N, &) approximate summation [45], should also be analyzed. An
advantage of the factorial series is that it avoid the use of Padé approximants
(which may, as said, not very suitable for fluid mechanics problems) to extend
the Borel transform.

Lastly, efforts are still needed to complete the Borel resummation theory
for partial differential equations.
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Appendix A. Time series expansion for the Navier—Stokes equa-
tions

In this appendix, a pertubation-method-based algorithm for the resolu-
tion of the discretized Navier—Stokes equations is presented and the con-
vergence radius of the series is estimated. We assume that the domain is
bounded.

Consider the Navier-Stokes equation (22), associated to the initial condi-
tion

u(0,x) = ug(x) (A.1)

that we assume analytic within the space domain. After a suitable space
discretization, these equations are transformed into a matrix equation:

oU
M=+ QU.U) + LU =0, (A.2)

with

Ult=0)="U,
where U (respectively Uy) are the vectors containing the nodal values of u
and p (resp. wug), M the mass matrix which is equal to the identity matrix
if finite difference method is used, L = (L;)i,j:LMN and @ is a vectorial
quadratic operator such that

N N
Q:(V,U)=> "> Qyvitt,
j=11=1
Q= (Q;l)i,j,l:l,m,N being a three-order tensor and N is the number of grid

points.
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The unknown vector U is decomposed into a formal time series as follows:
U(t):U0+U1t+U2t2+---+Uktk+... (A.3)

Injecting (A.3) in (A.2) and identifying according to the powers of ¢, one
obtains the following cascade of linear equations:

(Order 0: MU, + Q(Uy, Uy) + LUy = 0
Order 1 : 2MU2+Q(U0,U1)+Q(U1,U())+LU1 =0
' (A.4)

k
Order k= (k+1)MUpr + Y QU Up—y) + LU, = 0

r=0

\

The resolution of these equations provides an approximate solution in the
domain of validity of the series (A.3). Since only at most one matrice (M)
has to be inverted, the algorithm is explicit. The radius of convergence of
(A.3) can be estimated as follows.

For simplicity, we assume that the M is the identity matrix. We denote
U} the i’s component of Uy, for k > 0. Define

Q— ,max |le| L= max |LZ| Uy = max U (A5)
i.j=

...............

the respectlve norms of Q, L and Uj. It is straight forward to show that
Uil < QN?Uy* + LNU, < E. (A.6)
where £ = (QN?a? + LNa) and o = max(Up, 1). If we assume that
Ui < EF, k=1,... k
then

(kO + 1)|Ulfzo+1| -

N N . ko ‘ N ‘ '
35 (Sovri )+ i
r=0 j=1

j=11=1

N N k
(ko + DIUfy ] < QZZZOETE’“O ’"+LZE’“0
j=11=1r=0

< QNZ2(ky+ 1)E* + LNE*,
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that is
. 1
) 2 k ko+1
’Uk’o-i-l’ < <QN +LNm> B < Erot

This proves by recurrence that

U} < EF, Vi=1,...,N, keN.

In summary, with a well-behaved initial condition, the formal series of
the discretized Navier-Stokes equations decreases quadratically with the grid
point, as E does. In the general case, the series is divergent.
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