
HAL Id: hal-02471619
https://hal.science/hal-02471619

Submitted on 5 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A proper generalized decomposition approach for optical
flow estimation

Abdallah El Hamidi, Marwan Saleh, Nicolas Papadakis, Baudouin Denis de
Senneville

To cite this version:
Abdallah El Hamidi, Marwan Saleh, Nicolas Papadakis, Baudouin Denis de Senneville. A proper
generalized decomposition approach for optical flow estimation. Mathematical Methods in the Applied
Sciences, 2020, 43 (8), pp.5339-5356. �10.1002/mma.6275�. �hal-02471619�

https://hal.science/hal-02471619
https://hal.archives-ouvertes.fr


A PROPER GENERALIZED DECOMPOSITION APPROACH FOR

OPTICAL FLOW ESTIMATION

A. EL HAMIDI∗† , M. SALEH† , N. PAPADAKIS‡ , AND B. DENIS DE SENNEVILLE∗‡

Abstract. This paper introduces the use of the Proper Generalized Decomposition (PGD)
method for the optical flow (OF) problem in a classical framework of Sobolev spaces, i.e. optical
flow methods including a robust energy for the data fidelity term together with a quadratic penalizer
for the regularisation term.

A mathematical study of PGD methods is first presented for general regularization problems in
the framework of (Hilbert) Sobolev spaces, and their convergence is then illustrated on OF com-
putation. The convergence study is divided in two parts: (i) the weak convergence based on the
Brézis-Lieb decomposition, (ii) the strong convergence based on a growth result on the sequence of
descent directions. A practical PGD-based OF implementation is then proposed and evaluated on
freely available OF data sets.

The proposed PGD-based OF approach outperforms the corresponding non-PGD implementation
in terms of both accuracy and computation time for images containing a weak level of information,
namely low image resolution and/or low Signal-To-Noise Ratio (SNR).
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1. Introduction. Separated representations were introduced in the 80′s by P.
Ladevèze who proposed a space-time separated representation of transient solutions
involved in strongly non-linear models [18]. We refer the interested reader to Ladeveze
and co-authors works on this subject [20, 19, 21, 11]. Later, separated representations
were employed in the context of stochastic modeling [23] as well as for solving mul-
tidimensional models suffering from the so-called “curse of dimensionality”, some of
them never solved before [2, 9]. The techniques making use of separated representa-
tions computed on the fly were called Proper Generalized Decompositions (PGD) for
defining very efficient algorithms able to minimize smooth and convex functionals.

In this work, we are interested on the variational optical flow (OF) applica-
tion, initially proposed in the context of motion estimation in video sequences by
Horn&Schunck in 1981 [17]. The latter assumes that pixels conserve their intensity
along their trajectory, to which a spatial regularity constraint of the estimated motion
is added [15]. Classical methods then consider the estimation of the optical flow, a
2D vector field mapping the pixel of one 2D image to another one, through the mini-
mization of an energy functional containing two quadratic (convex and smooth) terms,
penalizing the intensity conservation constraint and the motion regularity. Using ro-
bust (i.e. non-quadratic) penalizers applied on the data fidelity term, it is expected
that the estimated motion will be less prone to errors caused by local gray-level in-
tensity perturbations. Such a model was recently proved to be of great interest for
the OF-based estimation of organ displacement during MR-guided surgical operations
[30]. Current state-of-the art methods in computer vision also use robust regulariz-
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ers (e.g. non-smooth Total Variation) [8, 29, 26], which are good priors when the
motion is assumed to be piecewise constant. Such regularizers are therefore not al-
ways adapted for deformable objects and smoother regularizers may be preferable for
particular applications such as organ registration in medical imaging [16].

Hence, this paper introduces the use of the Proper Generalized Decomposition
(PGD) method for fast and accurate resolution of the Optical flow problem. We focus

our interest in a classical framework of the (vectorial) Sobolev space
[
H1(Ω)

]d
, where

Ω is a bounded domain in R
d, d being the dimension of Ω (d = 2 in the case of OF).

For this purpose, we retrain our study to a global energy as a sum of a data term
(with L2 norm or smoothed L1 norm) and a regularization term (with L2 norm of the
OF gradient). In this manuscript, we show how to use the tensorial character of the
space H1(Ω) in order to reduce significantly the number of unknowns from the total

number of pixels

d∏

k=1

Nk to

d∑

k=1

Nk, when Ω = Ω1 × · · ·Ωd and Nk is the number of

discretized points of the 1D interval Ωk. We eventually show that such process can
even improve the properties of flow diffusion by better taking into account interactions
between neighboring pixels.

In the first part of the manuscript, the theoretical convergence of the method
is demonstrated and a numerical implementation is proposed. The proposed PGD-
based OF approach is then compared to the corresponding non-PGD implementation
in terms of both accuracy and computation time on the freely available Middlebury
image collection [4]. Benefits and drawbacks of the proposed PGD-based approach
are then compared and discussed for various conditions of image resolution, SNR and
number of color channels. It will be demonstrated that very fast and accurate OF al-
gorithms can be designed for low resolution images using tensorial representation. As
we will show, accurate motion fields can be estimated using a few linear combinations
of tensor products.

Such works may be of major interest for real-time image-based motion estimation
on embedded systems, especially when the latter require acute estimates with high
framerate and short latency. In particular, it may meet the need of using cheap
chipset for economical considerations, in order to expand the distribution of a product.
Another practical example can be found in the specific context of MR-guided surgical
operations which require reliable organ motion estimates using low resolution noisy
images with high framerate and short latency [13].

2. Mathematical tools and methods.

2.1. Proposed PGD Approach for variational problems. This section
deals with minimization problems with convex functionals defined on tensor Banach
spaces. Tensorial structure of Banach spaces allows optimization via dimensionality
reduction methods in a progressive way. In what follows, we focus on PGD methods
introduced by Ladevèze [18] and Ammar in [2, 3]. More precisely, we focus on the
mathematical and numerical study of such methods in the variational framework.

2.1.1. Tensor Banach Spaces and PGD. Consider a finite family of real
Banach spaces (Vk , ‖ · ‖k)1≤k≤d, where d ≥ 2 is an integer. The algebraic tensor
Banach space spanned by the family (Vk , ‖ · ‖k)1≤k≤d, denoted by

V := a

d⊗

k=1

Vk,
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is the set of all elementary tensors finite linear combinations v =
d⊗

k=1

vk, with vk ∈ Vk.

The suffix “a” in “a
⊗

” refers to the “algebraic” nature of the tensor product. That
is,
(2.1)

V =





m∑

j=1

v
(j)
1 ⊗ v

(j)
2 ⊗ · · · ⊗ v

(j)
d : m ∈ N

∗ and v
(j)
k ∈ Vk for k = 1, 2, · · · , d



 .

We say that V‖·‖ is a Banach tensor space if there exists an algebraic tensor space V
and a norm ‖ · ‖ on V such that V‖·‖ is the completion of V with respect to the norm
‖ · ‖, i.e.

V‖·‖ = a

d⊗

k=1

Vk

‖·‖

.

In the special case where V‖·‖ is a Hilbert space, one says that V‖·‖ is a tensor
Hilbert space.

In the sequel, the cone of all elementary tensors in V will be denoted by R1(V ),
i.e.

(2.2) R1(V ) = {v1 ⊗ v2 ⊗ · · · ⊗ vd : vk ∈ Vk for k = 1, 2, · · · , d} .

Thus the space spanned by R1(V ) is V which is in turn a dense subset of V‖·‖.

Now, consider a functional J : V‖·‖ −→ R, where V‖·‖ is a reflexive tensor Hilbert
space. We are interested in the minimization problem

(2.3) inf
u∈V‖·‖

J(u),

where J satisfies the hypotheses

(H1) J is differentiable,

(H2) J is coercive and J̃ := J − J(0)− J ′(0) is 2-elliptic, that is,

(2.4) ∃C > 0 : ∀ u, v ∈ V‖·‖ , one has 〈J̃ ′(u)− J̃ ′(v) , u− v〉V‖·‖
≥ C‖u− v‖2,

where 〈 · , · 〉V‖·‖
stands for the inner product in the Hilbert space V‖·‖. Notice that

the monotony condition (2.4) on J̃ ′ implies the strict convexity of J , but J is not
2-elliptic as in [14].

Applying standard arguments of the calculus of variations, one shows that prob-
lem (2.3) admits a unique solution, under hypotheses (H1) − (H2). To define PGD
methods, we assume furthermore
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(H3) R1(V ) is weakly closed inV‖·‖,

where V := a

⊗d
k=1 Vk is the algebraic tensor space associated to V‖·‖.

Notice that for any u ∈ V , the minimization problem

(2.5) inf
z∈R1(V )

J(u + z)

has at least one solution, under hypotheses (H1)− (H3). The possible non-uniqueness
of the solution to problem (2.5) is due to the fact that R1(V ) is not convex.

The PGD methods associated to problem (2.3) consist in the construction of a
sequence (um)m∈N ⊂ V as follows

(i) Initialization: u0 := 0.
(ii) Descent direction: choose ẑm := argminz∈R1(V ) J(um−1 + z).
(iii) Update strategies

Strategy (c)
um := um−1 + ẑm.
Strategy (r)
⋆ Construct a closed subspace of V‖·‖ containing ẑm, denoted by U(ẑm).
⋆ Choose the descent direction: z̃m := argminz∈U(ẑm) J(um−1 + z).
⋆ Update um := um−1 + z̃m.

Strategy (ℓ)
⋆ Construct a closed subspace of V‖·‖ containing um−1 + ẑm, denoted
by U(um−1 + ẑm).

⋆ Update um := argminu∈U(um−1+ẑm) J(u).
We refer the interested reader to [14] for possible choices of the closed subspaces

U(ẑm) and U(um−1 + ẑm). Thus, a PGD sequence u := (um)m∈N can be represented
by a sequence, possibly finite, of symbols denoted by

α̂(u) = α1 α2 α3 · · · αm · · ·

where αm ∈ {ℓ, c, r}, for every m = 1, 2, · · ·

In what follows and without loss of generality, we will focus on a variational
problem corresponding to the OF computation. Although we limit ourselves to the
case of the OF, it is clear that our approach remains valid for any energy satisfying
the hypotheses (H1)− (H3) on a tensor Hilbert space.

2.1.2. Example of L2−L2 Optical Flow. Let Ω be a domain of R2 which can
be written as the Cartesian product of two open intervals (Ωk)1≤k≤2 in R.

Denote the “grey-level” function at the point (x, y) ∈ Ω, at time t by I(x, y, t)
and

Γ(x0, y0, t0) := {(x(t), y(t)) : (x(t0), y(t0)) = (x0, y0), t ≥ t0},

be the trajectory, supposed to be smooth, of the point (x, y). It is appropriate to
assume that the grey level remains “constant” during an interval of infinitely small
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length included in Γ(x0, y0, t0). This hypothesis can be written by

d I

d t
(x(t), y(t), t) = 0, ∀ t > t0,

and is commonly called “Optical Flow constraint”. Using a Taylor approximation of
order 1, this constraint can be rewritten as

σ(x(t), y(t), t) · ∇I (x(t), y(t), t) + ∂I

∂t
(x(t), y(t), t) = 0, ∀ t > t0,

where σ(x(t), y(t), t) is the flow of (x(t), y(t)) at time t and ∇I (x(t), y(t), t) is the
spatial gradient of I at the point (x(t), y(t)). Hereafter, we set

σ := (u, v).

We fix a time t > t0 and to simplify the notation the time dependence of the
functions σ and I will be omitted.

We introduce the functional

(2.6) J0(σ) :=

∫

Ω

(
σ(x, y) · ∇I (x, y) + ∂I

∂t
(x, y)

)2

dxdy.

It is classical to consider the following functional to estimate the OF

(2.7) J(σ) := J0(σ) + J1(σ),

where

J1(σ) :=

∫

Ω

c(x, y)|σ(x, y)|2 dx dy + λ

∫

Ω

|∇σ(x, y)|2 dxdy.

The real parameter λ > 0 is a regularization parameter for ∇σ while the function
c(x, y) ≥ ε > 0, it penalizes homogeneous regions characterized by weak gradients
in the image. Thus, c(x, y) is small (resp. large) in regions of Ω where |∇I(x, y)| is
large (resp. small). We assume in what follows that c ∈ C∞(Ω). This approach will
be denoted by L2 − L2 approach, that is, the regularization term is taken with the
L2(Ω)−norm and the same applies for the data-fidelity term. data

Remark The term

∫

Ω

c(x, y)|σ(x, y)|2 dx dy in the regularization term J1(σ) is neces-

sary for the (theoretical) coerciveness of the energy J , due to the lack of coerciveness
in the regions of Ω where σ(x, y) · ∇I (x, y) = 0. In our applications, we observe that
the absence of this term does not affect the quality the PGD convergence, that is, a
”numerical coerciveness” of the energy holds true.

It is obvious that the functional framework of J is W‖·‖ :=
[
H1(Ω)

]2
and conse-

quently, the associated minimization problem for the OF estimate is

(2.8) inf
σ∈W‖·‖

J(σ).
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The usual norms on W‖·‖ and on H1(Ω) will be denoted by ‖ · ‖.
Then we have

(2.9) ‖ξ‖ =





‖ξ‖2 + ‖∇ξ‖2 if ξ ∈ H1(Ω)

‖ |ξ|2 ‖1/22 + ‖ |∇ξ|2 ‖1/22 if ξ ∈ W‖·‖

where ‖ · ‖2 denotes the usual norm on L2(Ω), | · | is the Euclidean norm on R
2 and

∇ξ := (∇ξ1 , ∇ξ2), for every ξ = (ξ1, ξ2) ∈ W‖·‖.

One can easily verify that the functional J satisfies the hypotheses (H1)− (H2).
Therefore, since the space W‖·‖ is reflexive, Problem (2.8) has a unique solution, by
direct methods of variational calculus. Moreover, since the space H1(Ω) has a Hilbert
tensor structure, i.e.,

(2.10) H1(Ω) = a

2⊗

k=1

H1(Ωk)

‖·‖

,

then the spaceW‖·‖ also, as a finite cartesian product of tensorial Hilbert spaces. The
algebraic tensor space associated to W‖·‖ is

(2.11) W :=

[
a

2⊗

k=1

H1(Ωk)

]2
.

To describe the PGD method in the vectorial framework, we introduce the set

(2.12) R1(W ) :=

[
R1

(
a

2⊗

k=1

H1(Ωk)

)]2

of elementary tensors in W .

It is well-known that R1

(
a

2⊗

k=1

H1(Ωk)

)
is weakly closed in H1(Ω), consequently

R1(W ) is also weakly closed inW‖·‖. Whence, the hypotheses (H1)−(H3) are satisfied
in the framework of OF considered here and for every σ ∈ W‖·‖, the minimization
problem

(2.13) inf
z∈R1(W )

J(σ + z)

has a unique solution.
Lemma 2.1. If σ := (σ1, σ2) ∈ W‖·‖ satisfies

J(σ) ≤ J(σ + z), ∀z ∈ R1(W ).

then σ is the unique solution of (2.8).
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Proof. Let z = (ϕ, ψ) ∈ R1(W ) and let the function g : R
2 −→ R be defined by

g(r, s) = J(σ1 + r ϕ, σ2 + s). It is clear that the function g is differentiable on R
2

and realizes is global minimum at (0, 0). Consequently ∇g(0, 0) = J ′(σ) · (ϕ, ψ) = 0.
Using the linearity of J ′(σ), we deduce that J ′(σ) = 0 on W . Finally the density of
W in W‖·‖ concludes the proof. �

We will consider the method PGD with the strategy (c) for the progressive ap-
proximation of the OF

(2.14) (M)





(i) Initialization :
(u0, v0) := (0, 0) in W‖·‖.

(ii) Descent direction :
(ϕm, ψm) := argmin(ϕ,ψ)∈R1(W ) J(um−1 + ϕ, vm−1 + ψ).

(iii) Update :
(um, vm) := (um−1, vm−1) + (ϕm, ψm), ∀m ≥ 1.

This is the most used PGD method thanks to its implementation simplicity. We
prove in the sequel that every PGD sequence (M) is convergent in W‖·‖.

Remark The sequence of descent directions satisfy the identity

J ′(um, vm) · (ϕm, ψm) = 0, ∀m ≥ 1.

Theorem 2.2. Let Ω =

2∏

k=1

Ωk be a domain in R
3, where (Ωk)1≤k≤2 denotes

open intervals in R, not necessarily bounded. Let J the functional defined on W‖·‖

by (2.7), where the function I ∈ W 1,∞(]0,+∞[×Ω) and the function c is continuous
on Ω, positive et bounded. Then the sequence (um, vm)m∈N ⊂ W , defined by (M),
converges weakly in W‖·‖ toward the unique solution of (2.8).

Proof. Let (um, vm)m∈N ⊂W be a PGD sequence defined by (M). It is clear that the
real sequence (J(um, vm))m∈N is decreasing, bounded below and consequently conver-
gent in R, we denote its limit by ℓ. The coerciveness of J implies that (um, vm)m∈N

is bounded in W‖·‖.
To show that (um, vm)m converges weakly in W‖·‖, we show that (um, vm)m has a
unique limit point for the weak topology of W‖·‖.
Let (u, v) ∈ W‖·‖ be a limit point of (um, vm)m for the weak topology of W‖·‖ and let
(umk

, vmk
)k a subsequence of (um, vm)m converging weakly to (u, v).

As umk
⇀ u in H1(Ω1) then umk

+ ϕ ⇀ u+ ϕ, for every ϕ ∈ H1(Ω1). Therefore, we
have the following Brézis-Lieb decompositions:

‖umk
− u‖2L2(Ω1)

= ‖umk
+ ϕ‖2L2(Ω1)

+ ‖u+ ϕ‖2L2(Ω1)
− 2 〈umk

+ ϕ , u+ ϕ〉L2(Ω1)

= ‖umk
+ ϕ‖2L2(Ω1)

− ‖u+ ϕ‖2L2(Ω1)
+ ok(1),
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where ok(1) is a correction term satisfying lim
k→+∞

ok(1) = 0, and

‖∇umk
−∇u‖2L2(Ω1)

= ‖∇umk
+∇ϕ‖2L2(Ω1)

+ ‖∇u+∇ϕ‖2L2(Ω1)
−

2〈∇ (umk
+ ϕ) , ∇ (u+ ϕ)〉L2(Ω1)

= ‖∇umk
+∇ϕ‖2L2(Ω1)

− ‖∇u+∇ϕ‖2L2(Ω1)
+ ok(1).(2.15)

Using the same arguments for the sequences (vmk
)k, we get

(2.16) J(umk
− u, vmk

− v) = J(0) + J(umk
, vmk

)− J(u, v) + ok(1).

On the other hand,

(2.17) J(umk+1
, vmk+1

) ≤ J(umk+1, vmk+1) ≤ J(umk
+ ϕ, vmk

+ ψ),

∀ (ϕ, ψ) ∈ R1(W ).

Then, for every (ϕ, ψ) ∈ R1(W ) one gets

(2.18)
J(umk+1

−u, vmk+1
−v)+J(u, v) ≤ J(umk

−u, vmk
−v)+J(u+ϕ, v+ψ)+o

k
(1).

Using the fact that J(umk+1
− u, vmk+1

− v) and J(umk
− u, vmk

− v) have the
same limit ℓ− J(u, v) as k −→ +∞, we obtain

(2.19) J(u, v) ≤ J(u+ ϕ, v + ψ), ∀ (ϕ, ψ) ∈ R1(W ).

Lemma 2.1 implies that (u, v) is thus the unique solution (2.8). Hence, the se-
quence (um, vm)m∈N has a unique adherence value for the weak topology of W‖·‖, it
converges weakly to the unique solution of problem (2.8). �

In what follows, the dual space of W‖·‖ will be denoted by W ′
‖·‖ and the norm in

this dual space by ‖ · ‖⋆.

Corollary 2.3. Under the same hypotheses as in Theorem 2.2, one has

J ′(σm)⇀ 0 in W ′
‖·‖ − weak ⋆ .

In other words,

lim
m→+∞

J ′(σm) · z = 0, ∀ z ∈W‖·‖.

Proof. Simply write out the expression of J ′(σm) · z and use the weak convergence
of (σm)m to the unique solution of (2.8). �

We give some technical lemmas in order to show the strong convergence of PGD
sequences given by the scheme (M).
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Lemma 2.4. The sequence of successive descent directions zm := (ϕm, ψm) de-
fined in (M) for the PGD sequence (σm)m satisfies

+∞∑

k=1

‖zk‖2 < +∞,

in particular, lim
m→+∞

zm = 0 in W‖·‖.

Proof. Introducing the quadratic part of J defined on W‖·‖ by

J̃(σ) := J(σ)− J(0)− J ′(0) · σ,

we have that

J ′(σ) · χ = J̃ ′(σ) · χ+ J ′(0) · χ.

By definition of J̃ ′(σ) · χ and due to the symmetry of the mapping (σ, χ) 7→ J̃ ′(σ) · χ

J ′(σm) · σm = J ′(σm) · σm−1

= J̃ ′(σm) · σm−1 + J ′(0) · σm−1

= J̃ ′(σm−1) · σm−1 +

J ′(0) · σm−1 + J̃ ′(zm) · σm−1

= J ′(σm−1) · σm−1 + J̃ ′(σm−1) · zm
...

=
m−1∑

j=1

J̃ ′(σj) · zj+1, since σ0 = 0 and J̃ ′(0) = 0

=
∑

1≤i<j≤m

J̃ ′(zi) · zj, since σi =

i∑

j=1

zj

=
1

2

(
J̃ ′(σm) · σm −

m∑

k=1

J̃ ′(zk) · zk
)

=
1

2

(
J ′(σm) · σm − J ′(0) · σm −

m∑

k=1

J̃ ′(zk) · zk
)
.

Hence, one obtains

(2.20) J ′(σm) · σm = −J ′(0) · σm −
m∑

k=1

J̃ ′(zk) · zk·

Since J̃ ′(zk)·zk ≥ C1 ‖zk‖2, for any k and (σm)m bounded, we deduce by Corollary
2.3 that

(2.21)
m∑

k=1

‖zk‖2 ≤ C2 (‖J ′(σm)‖⋆ × ‖σm‖+ ‖J ′(0)‖⋆ × ‖σm‖) ≤ C3.
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In particular, lim
m→+∞

‖zm‖ = 0. �

Lemma 2.5. Let (σm)m∈N be a PGD sequence for the problem (2.8), there exists
C > 0 such that

|J ′(σm−1) · z| ≤ C‖zm‖ ‖z‖,

for any z ∈ R1(W ), where zm := (ϕm, ψm) is the descent direction at the iteration
m ≥ 1, defined in (M).

Proof. First, remark that J ′ : W‖·‖ −→ W ∗
‖·‖ is Lipschitz continuous. On the other

hand, the convexity of J leads to

(2.22) J ′(σm−1 + z) · (zm − z) ≤ J(σm−1 + zm)− J(σm−1 + z) ≤ 0,

thus

(2.23) J ′(σm−1 + z) · zm ≤ J ′(σm−1 + z) · z.

−J ′(σm−1) · z = (J ′(σm−1 + z)− J ′(σm−1)) · z − J ′(σm−1 + z) · z
≤ C‖z‖2 − J ′(σm−1 + z) · z (J is Lipschitz continuous)

≤ C‖z‖2 − J ′(σm−1 + z) · zm (from 2.23)

= C‖z‖2 − (J ′(σm−1 + z)− J ′(σm−1 + zm)) · zm
≤ C

(
‖z‖2 + ‖z − zm‖ ‖zm‖

)

≤ C
(
‖z‖2 + ‖z‖ ‖zm‖+ ‖zm‖2

)
.

Hence, replacing z by ± z
‖zm‖
‖z‖ in the previous inequalities, we obtain

|J ′(σm−1) · z| ≤ 3C‖zm‖ ‖z‖. �

Lemma 2.6. With the same notations as Theorem 2.2, one has

lim
m→+∞

J ′(σm) · σm = 0,

and the sequence PGD (σm)m given by the scheme (M) converges to the solution of
(2.8).

Proof. Applying the fact that

+∞∑

k=1

J̃ ′(zk) · zk < +∞ and lim
m→+∞

J ′(0) ·σm = J ′(0) · σ̂,

where σ̂ is the weak limit of (σm)m∈N (and at the same time the unique solution of (2.8)
from Theorem 2.2), we deduce, using (2.20), that the real sequence (J ′(σm) · σm)m is
convergent.
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On the other hand, one has

|J ′(σm) · σm| ≤
m∑

k=1

|J ′(σm) · zk|

≤ C

m∑

k=1

‖zm+1‖ ‖zk‖ (Lemma 2.5)

≤ C
(
m ‖zm+1‖2

)1/2
(

m∑

k=1

‖zk‖2
)1/2

(Hölder’s inequality)

≤ C
(
(m+ 1) ‖zm+1‖2

)1/2
(

+∞∑

k=1

‖zk‖2
)1/2

Finally, as

+∞∑

k=1

‖zk‖2 < +∞ there is a subsequence (zmk
)
k
of (zm)m such that

lim
k→+∞

mk ‖zmk
‖2 = 0. Therefore,

lim
m→+∞

J ′(σm) · σm = lim
k→+∞

J ′(σmk
) · σmk

= 0.

Applying the fact that





σm ⇀ σ inW‖·‖

J ′(σm) · σm → 0 for m→ +∞

and the decomposition formulae (2.15) and (2.15), we deduce that

J ′(σm − σ) · (σm − σ) → 0 for m→ +∞.

Consequently, we obtain

(2.24) J ′(0) · (σm − σ) + J̃ ′(σm − σ) · (σm − σ) → 0 for m→ +∞,

which concludes the proof. �

Remark The novelty of our convergence proof is to bring out that weak conver-
gence of the PGD sequence (σm)m is due to the Brezis-Lieb decomposition [7]. Our
result can then lead to PGD weak convergence for a large class of variational problems
where strong convergence can not hold true. On the other hand, in the literature ([14]
and the references therein), the ellipticity condition (H2) refers to J but in the present

work it refers to the modified energy J̃ , that is, the weak-convergence overcomes the
affine part of J .

Another approach can be mentioned, the L2 − L1 one, with

(2.25) J0(σ) :=

∫

Ω

∣∣∣∣σ(x, y) · ∇I (x, y) +
∂I

∂t
(x, y)

∣∣∣∣ dxdy.
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and

(2.26) J(σ) := J0(σ) + J1(σ),

where

J1(σ) :=

∫

Ω

c(x, y)|σ(x, y)| dx dy + λ

∫

Ω

|∇σ(x, y)|2 dxdy.

If Ω is a bounded domain in R
2 then using the continuous Sobolev imbeddings

W 1,2(Ω) ⊂W 1,1(Ω) ⊂ L2(Ω), we remark that

‖u‖L2(Ω) ≤ c1
(
‖u‖L1(Ω) + ‖∇u‖L1(Ω)

)
≤ c2

(
‖u‖L1(Ω) + ‖∇u‖L2(Ω)

)
, ∀u ∈W 1,2(Ω)

and this second approach can be handled in the same way as the L2 − L2, pro-
vided make J differentiable. To perform this, we can replace |s| by

√
s2 + ε2, with

s = σ(x, y) ·∇I (x, y)+ ∂I
∂t (x, y) or s = σ(x, y) in the expression of J and ε sufficiently

small.

However, the approach L1 − L2 can not be performed, since this requires the
regularisation by total variation, and thus, in turn, the functional framework of the
space of functions bounded variation, which is not a Banach Tensor space [25].

In what follows, we will implement the PGD method described in (M) in the two
dimensional case. Then Ω = Ω1 × Ω2, and generic points of Ω will be denoted by
(x, y). The planar OF will be denoted by σ(x, y) = (u(x, y), v(x, y)).

2.2. Implementation of tested OF approaches. Using quadratic penalizers,
outliers (such as noise or occultations) may get high influence on the energy. It has
been proposed in the past to employ non-convex penalization of the OF constraint of
Eq. (2.6), in order to obtain a robust data term [6]. Unfortunately, such penalizations
lead to ill-posed mathematical minimization problems. Two typical OF methods are
described and evaluated. They differ in the penalizer applied on the data fidelity
term s = It + ∇I · σ. A first one is based on a quadratic penalizer (referred to as
“L2−L2 approach”, R(s) = s2), and a second one on a L1 regularization (referred to
as “L2 − L1 approach”, R(s) =

√
s2 + ǫ2, with ǫ = 10−3). An experimental setup is

then presented to compare implemented PGD methods to their corresponding non-
PGD implementations in terms of accuracy of motion estimates as well as computation
time.

2.2.1. General data processing sequence of the implemented OF ap-

proaches. The general implementation of the implemented OF approaches is out-
lined for both approaches as a sequence diagram in Fig. 1. We denote from now
Iref and Icur as the reference and the current images to register. A multi-resolution
scheme was performed which iterated the registration from a 64 × 64 downsampled
image step by step to the original image resolution [24]. Common processing steps are
reported in white boxes. Specific implementations of the processing step in grey are
detailed in sections 2.2.2 and 2.2.3 for the PGD-based and the non-PGD approaches,
respectively.
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Fig. 1. Data processing sequence of the implemented OF approaches. Specific implemen-
tations of the processing step in grey is detailed in sections 2.2.2 and 2.2.3 for the PGD-based
and the non-PGD approaches, respectively.

2.2.2. Proposed PGD-based approach. Applying the Euler-Lagrange equa-
tion on Eq. (2.8), one can derive two equations for each (x, y) ∈ Ω, as follows

(2.27)

{
R′ (Ixu+ Iyv + It) Ix − λ∆u = 0
R′ (Ixu+ Iyv + It) Iy − λ∆v = 0

For the L2 data term, one just gets R′(s) = 2s, whereas R′(s) = s/R(s) for the L1

data term. The system of Eq. (2.27) can therefore be rewritten as follows

(2.28)

{
I2xu+ IxIyv + IxIt − λK(u, v)∆u = 0
IxIyu+ I2yv + IyIt − λK(u, v)∆v = 0

with K(u, v) = 1/2 for the L2 data term and

(2.29) K(u, v) =
√
(Ixu+ Iyv + It)2 + ǫ2.

for the L1 one. The proposed solution strategy, based on three nested loops, is
summarized in Fig. 2. Our implementation takes maximum benefit of terms that can
be expressed linearly, leaving an explicit non-linear expression for the other terms.

The main loop (which iterates in m) seeks the solution of the following iterative
process

(2.30)

{
um = um−1 + ϕm

⊗
ψm

vm = vm−1 + ϕ̃m
⊗
ψ̃m

with

(2.31)

{
um−1 =

∑m−1
i=1 ϕi

⊗
ψi

vm−1 =
∑m−1

i=1 ϕ̃i
⊗
ψ̃i
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Fig. 2. Data processing sequence of the proposed PGD-based OF solution. The two steps
in grey correspond to the most computationally intensive numerical tasks, the rest of the
algorithm being mainly composed by conditional tests.

Spatio-temporal derivative Ix,y ,t were updated at each iteration (a centered finite
difference scheme was employed for the computation of Ix,y) and the norm of the
increment ‖(u, v)m‖2 was compared to a maximal allowed tolerance ε in order to
ensure the convergence. A specific ε value was employed for each level of the multi-
resolution scheme described in section 2.2.1. While a starting value of ε = 0.01
was used for the original image resolution, this value was divided by a factor 2 each
time Iref and Icur were down-sampled with a factor 2. That way, higher numbers
of iterations were employed at low image resolution levels, the latter being less time
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consuming.

For each iteration m, PGD components
(
ϕ, ϕ̃, ψ, ψ̃

)
m

are the solution of the

following non-linear system of N2
1 ×N2

2 equations (we recall that N1 and N2 denote
the number of pixels along the horizontal and the vertical directions, respectively).

(2.32)





I2xϕmψm + IxIyϕ̃mψ̃m
− λK(um, vm)ϕ′′

mψm
− λK(um, vm)ϕmψ

′′
m

= − IxIt
+ λK(um, vm)∆um−1

IxIyϕmψm + I2y ϕ̃mψ̃m
− λK(um, vm)ϕ̃′′

mψ̃m
− λK(um, vm)ϕ̃mψ̃

′′
m

= − IyIt
+ λK(um, vm)∆vm−1

That way, it must be underlined that the data fidelity term relies on updated
variables at each iteration m, which reduces the impact of the Taylor approximation
introduced in Eq. (2.6). This means that It, Ix and Iy are registrated with respect to
um−1 and vm−1. The regularization, for its part, is performed of the overall resulting
motion.

We divide this task in two successive problems, one for the calculation of (ϕ, ϕ̃)m

and one for the calculation of
(
ψ, ψ̃

)
m
. The solving of these two problems is repeated

iteratively (see the second nested loop, which iterates in l, in Fig. 2) until the residual∥∥∥∥
(
ϕ̃m
⊗
ψ̃m

)
l
−
(
ϕ̃m
⊗
ψ̃m

)
l−1

∥∥∥∥
2

reaches a user-defined tolerance ε. The ε value

employed for the l-loop was similar to the one employed for the m-loop detailed
above.

First components of the tensorial product (ϕm, ϕ̃m)l were computed as follows:

Multiplying the first and the second equation of Eq. (2.32) by (ψm)l and
(
ψ̃m

)
l
,

respectively, and integrating the result along the y direction, one can derive the fol-
lowing system of 2×N1 equations ((ϕm)l (x) and (ϕ̃m)l (x) being the unknowns)

(2.33)

{
A(x) (ϕ′′

m)l (x) +B(x) (ϕm)l (x) + C(x) (ϕ̃m)l (x) = D(x)

Ã(x) (ϕ̃′′
m)l (x) + B̃(x) (ϕm)l (x) + C̃(x) (ϕ̃m)l (x) = D̃(x)

where
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A(x) = −λ
∫
Ω2
[K (um(x, y), vm(x, y)) (ψm)l (y)

2]dy

B(x) = λ
∫
Ω2

[∂yK (um(x, y), vm(x, y)) (ψm)l (y) (ψ
′
m)l (y)] dy

+λ
∫
Ω2

[
K (um(x, y), vm(x, y)) (ψ′

m)l (y)
2
]
dy

+
∫
Ω2

[
Ix(x, y)

2 (ψm)l (y)
2
]
dy

C(x) =
∫
Ω2

[Ix(x, y)Iy(x, y)
(
ψ̃m

)
l
(y) (ψm)l (y)]dy

D(x) = λ
∫
Ω2

[K (um(x, y), vm(x, y))∆um−1(x, y) (ψm)l (y)]dy

−
∫
Ω2

[Ix(x, y)It(x, y) (ψm)l (y)]dy

Ã(x) = −λ
∫
Ω2
[K (um(x, y), vm(x, y))

(
ψ̃m

)
l
(y)2]dy

B̃(x) = C(x)

C̃(x) = λ
∫
Ω2

[
∂yK (um(x, y), vm(x, y))

(
ψ̃m

)
l
(y)
(
ψ̃′
m

)
l
(y)
]
dy

+λ
∫
Ω2

[
K (um(x, y), vm(x, y))

(
ψ̃′
m

)
l
(y)2

]
dy

+
∫
Ω2

[
Iy(x, y)

2
(
ψ̃m

)
l
(y)2

]
dy

D̃(x) = λ
∫
Ω2

[K (um(x, y), vm(x, y))∆vm−1(x, y)
(
ψ̃m

)
l
(y)]dy

−
∫
Ω2

[Iy(x, y)It(x, y)
(
ψ̃m

)
l
(y)]dy

Note that an integration by part was performed in B(x) and C̃(x) in order to

remove the second order derivative expressions of ψm and ψ̃m, respectively. From here,
a linear iterative scheme, based on the Jacobi method, has been set up as follows (see
the first of the two nested loops iterating along k, in Fig. 2)

• Second order terms ∆um−1 and ∆vm−1 were computed explicitly as follows:
An approximation of the Laplacian was used, as suggested by Horn&Schunck,
where ∆um−1 = (um−1 − um−1), um−1 being the mean value of um−1 in a
neighborhood (3× 3 pixels) of the estimated point [17] (the same approxima-
tion was employed for the calculation of ∆vm−1).

• The non-linear term for the L1 data expression K (um, vm) was computed
explicitly as follows

(2.34) K (um, vm) =
√
(Ixum−1 + Iyvm−1 + It)2 + ǫ2.

• Second derivative terms
(
ϕ′′
m, ϕ̃

′′
m, ψ

′′
m, ψ̃

′′
m

)
l
were linearized as follows: At

each iteration k, we used the approximation (ϕ′′
m)

k
l =

(
(ϕm)

k−1

l − (ϕm)
k
l

)
,

(ϕm)
k−1

l being the mean value of (ϕm)
k−1
l in a neighborhood (3 pixels) of the

estimated point. The same approximation was employed for the calculation

of the other terms
(
ϕ̃′′
m, ψ

′′
m, ψ̃

′′
m

)
l
. That way,

(
ϕm, ϕ̃m, ψm, ψ̃m

)
l
were ex-

pressed explicitly, leaving an implicit linear formulation in (ϕm)
k
l and (ϕ̃m)

k
l .

Solutions (ϕm, ϕ̃m)l of Eq. (2.33) could thus be obtained using the following fixed
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point schemes

(2.35)





(ϕm)
k
l =

(
D−A(ϕm)

k−1

l

)
(C̃−Ã)−

(
D̃−Ã(ϕ̃m)l

k−1
)
C

(B−A)(C̃−Ã)−B̃C

(ϕ̃m)kl =
(B−A)

(
D̃−Ã(ϕ̃m)

k−1

l

)
−B̃

(
D−A(ϕm)

k−1

l

)

(B−A)(C̃−Ã)−B̃C

The residual
∥∥∥(ϕm, ϕ̃m)

k
l − (ϕm, ϕ̃m)

k−1
l

∥∥∥
2
was compared to a maximal allowed

tolerance ε = 10−4 in order to ensure the convergence.
It is important to underline that its is only necessary to solve a system containing

2×N1 equations in order to get (ϕm, ϕ̃m).

The second components of the tensorial product
(
ψm, ψ̃m

)k
l
were then obtained

identically (see the second of the two nested loops iterating along k, Fig. 2), using
however the updated (ϕm, ϕ̃m)l, as follows

(2.36)





(ψm)
k
l =

(
H−E(ψm)

k−1

l

)
(G̃−Ẽ)−

(
H̃−Ẽ(ψ̃m)

k−1

l

)
G

(F−E)(G̃−Ẽ)−F̃G
(
ψ̃m

)k
l

=
(F−E)

(
H̃−Ẽ(ψ̃m)

k−1

l

)
−F̃

(
H−E(ψm)

k−1

l

)

(F−E)(G̃−Ẽ)−F̃G

where





E(y) = −λ
∫
Ω1

[K (um(x, y), vm(x, y)) (ϕm)l (x)
2]dx

F (y) = λ
∫
Ω1

[∂xK (um(x, y), vm(x, y)) (ϕm)l (x) (ϕ
′
m)l (x)] dx

+λ
∫
Ω1

[
K (um(x, y), vm(x, y)) (ϕ′

m)l (x)
2
]
dx

+
∫
Ω1

[
Ix(x, y)

2 (ϕm)l (x)
2
]
dx

G(y) =
∫
Ω1

[Ix(x, y)Iy(x, y) (ϕ̃m)l (x) (ϕm)l (x)]dx

H(y) = λ
∫
Ω1

[K (um(x, y), vm(x, y))∆um−1(x, y) (ϕm)l (x)]dx

−
∫
Ω1

[Ix(x, y)It(x, y) (ϕm)l (x)] dx

Ẽ(y) = −λ
∫
Ω1

[K (um(x, y), vm(x, y)) (ϕ̃m)l (x)
2]dx

F̃ (y) = G(y)

G̃(y) = λ
∫
Ω1

[∂xK (um(x, y), vm(x, y)) (ϕ̃m)l (x) (ϕ̃
′
m)l (x)] dx

+λ
∫
Ω1

[
K (um(x, y), vm(x, y)) (ϕ̃′

m)l (x)
2
]
dx

+
∫
Ω1

[
Iy(x, y)

2 (ϕ̃m)l (x)
2
]
dx

H̃(y) = λ
∫
Ω1

[K (um(x, y), vm(x, y))∆vm−1(x, y) (ϕ̃m)l(x)] dx

−
∫
Ω1

[Iy(x, y)It(x, y) (ϕ̃m)l (x)] dx

Again, one can notice that another set of only 2×N2 equations was necessary in

order to estimate
(
ψm, ψ̃m

)k
l
.

2.2.3. Implementation of the corresponding non-PGD approach. This
section describes the existing non-PGD implementation employed to assess the ben-
efit of the proposed PGD approach in terms of accuracy of motion estimates as well
as computation time. To clarify the advantages on the final results, our non-PGD
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implementation takes benefit of terms that can be expressed linearly, leaving an ex-
plicit non-linear expression for the others, similarly as previously. For both methods,
the same convergence criteria were employed. Similar implementations were also em-
ployed for the computation of the spatio-temporal derivatives and the approximation
of the Laplacian. The reader is referred to the section 2.2.2 for more details on the
implementation.

The solving strategy of the non-PGD approach, based on two nested loops, is
summarized in Fig. 3.

Fig. 3. Data processing sequence of the non-PGD OF solution. The step in grey corre-
sponds to the most computationally intensive numerical task, the rest of the algorithm being
mainly composed by conditional tests.

The main loop (which iterates in m) is an iterative refinement which updates
Ix,y ,t within each resolution. The solution of the following iterative process was seek

(2.37)

{
u =

∑∞
m=1 um

v =
∑∞

m=1 vm

To ensure the convergence of the algorithm, the norm of the increment ‖(u, v)m‖2
was compared to a maximal allowed tolerance ε. The employed ε value was identical
to the one used for the PGD case (see section 2.2.2). From the system of Eq. (2.28),
one have that partial motion field components (u, v)m are solution of the following
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non-linear system of N2
1 ×N2 equations

(2.38)





I2x um + IxIy vm
− λK(um, vm) ∆um = −IxIt + λK(um, vm) ∆um−1

IxIy um + I2y vm
− λK(um, vm) ∆vm = −IyIt + λK(um, vm) ∆vm−1

That way, similar to the proposed PGD implementation, we recall that the data
fidelity term relies on updated variables at each iterationm, which reduces the impact
of the Taylor approximation introduced in Eq. (2.6). The regularization, for its part,
is performed of the overall resulting motion (i.e. (um + um−1, vm + vm−1)).

Whithin each iterationm, the Euler-Lagrange equations of Eq. (2.28) were solved
using an iterative scheme based on the Jacobi method (see the second nested loop,
which iterates in k, Fig. 3) as follows

(2.39)



(um)
k

= (um)
k−1

+∆um−1 − Ix

(
Ix

(
(um)

k−1
+∆um−1

)
+Iy

(
(vm)

k−1
+∆vm−1

)
+It

I2x+I
2
y+λK(um,vm)

)

(vm)
k

= (vm)
k−1

+∆vm−1 − Iy

(
Ix

(
(um)

k−1
+∆um−1

)
+Iy

(
(vm)

k−1
+∆vm−1

)
+It

I2x+I
2
y+λK(um,vm)

)

The residual
∥∥∥(um, vm)

k − (um, vm)
k−1
∥∥∥
2
was compared to a maximal allowed toler-

ance ε = 10−4 in order to ensure the convergence.
At this point, it is interesting to note that it is required to solve a system of

N1 ×N2 equations in order to get um and vm.

2.2.4. Extension to color images. A higher level of information is available
on color images since for each pixel, one piece of information stems from each color
channel (i.e. red, green and blue). The functional of Eq. (2.8), which only accounts
for a single channel, was generalized for color images using J0 rewritten as follows

(2.40) J0 =

∫

Ω

[
3∑

c=1

R

(
∇Ic(x, y) +

∂I

∂t
(x, y)

)]
dxdy,

where c is an index iterating over the red/grey/blue color channels. The reader is
referred to section 2.2 for the determination of R.

The generalization of numerical schemes associated to the PGD and the non-
PGD approaches (described in sections 2.2.2 and 2.2.3, respectively) is then rather
straightforward.

2.3. Experimental setup. The ability of the proposed PGD-based approach
to solve L2−L2 and L2−L1 OF problems on images containing various amount of in-
formation (in terms of image resolution and/or SNR) was assessed on the Middlebury
data sets [4]. The tested Middlebury collection includes eight data sets composed by a
reference image, images to register and the associated groundtruth motion field. Both
greyscale and color versions for the reference and the image to register are available.

The performance of the PGD-based approach was compared to the non-PGD
implementation for images undergoing the following experimental conditions:
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• To investigate the impact of the image resolution on the performance of the
proposed PGD method, various data dimensions (i.e. the reference image,
the image to register and the associated goldstandard displacement field) were
constructed using a bicubic interpolation. Image resolutions of 64 × 64 and
128× 128 were thus generated.

• To investigate the impact of low SNR, both the reference and the image to
register were disturbed by a simulated Gaussian noise prior to the motion
estimation process. For this purpose, a noise standard deviation equal 5% of
the maximum color channel intensity were employed. Registration was then
performed on a pair of images affected by the same level, but resulting from
different realizations of the noise.

• OF algorithms are known to perform better on pre-filtered images. The
reason is the following: The OF implementation estimates the displacement
of a pixel only locally without taking into account any interaction between
neighboring pixels. Consequently, it may run into problems once the gradient
disappears somewhere, or if only the flow in normal direction to the gradient
can be estimated (known in the literature as the “aperture problem” [1]). In
addition, some outliers may be expected in the estimates. It is consequently
useful to introduce as a further assumption the smoothness of the flow field.
To investigate the impact of the image pre-filtering, both the reference and
the image to register were filtered by a spatial Gaussian filter prior the motion
estimation process, as described in [5]. For this purpose, a 5 × 5 Gaussian
kernel with a standard deviation equal to 0.3 was employed.

• Since a higher level of information is available on color images (for each pixel,
one piece of information stems from each color channel), the proposed PGD-
based method was evaluated on both greyscale and color images.

During the registration process, the intensity of each channel image were normal-
ized such that they lie between 0 and 1. Since in this interval |x| ≥ x2, it is expected
that the λ value with the L2 − L1 functionals will need to be higher than the one
employed by the L2 − L2 functionals in order to provide similar motion estimates.
Arbitrarily chosen λ values of 0.1 and 0.5 were consequently employed in the scope of
this study for the L2 − L2 and the L2 − L1 approaches, respectively.

Our test platform was an Intel Core CPU i3-M370 dual-core 2.40 GHz with 2 GB
of RAM.

2.4. Assessement of the proposed PGD-based approach. The accuracy
of each motion estimate was quantified on pixel-by-pixel basis using the Endpoint
Error (EE) and the Angular Error (AE). Averaged EE and AE were compared for the
existing non-PGD and the proposed PGD-based approaches for each tested data set
and each experimental condition described above. For this purpose, the improvement
ratio of the averaged EE and AE between the non-PGD and the proposed PGD-based
approaches was computed (an improvement ratio higher than 1 tells that the proposed
PGD-based approach outperforms the non-PGD one). The percentage of improved
Middlebury data sets as well as the required computation times were also reported.

3. Results. Fig. 4 shows typical findings of the efficiency of the PGD-based
OF obtained on a subset of three greyscale Middlebury video sequences, namely
“Dimetrodon”, “Grove 2” and “Hydrangea”. For this purpose, the L1 − L2 func-
tional was optimized on each couple of images, each one being resized to a resolution
of 64× 64 pixels. For each sequence, the error of motion estimates were found to be
reduced using the PGD approach as compared to the non-PGD case (see the corre-
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Reference image (Sequence #1) Existing method (Sequence #1) PGD−based method (Sequence #1)

(a) (b) (c) (d)
Reference image (Sequence #2) Goldstandard (Sequence #2) Existing method (Sequence #2) PGD−based method (Sequence #2)

(e) (f) (g) (h)
Reference image (Sequence #4) Goldstandard (Sequence #4) Existing method (Sequence #4) PGD−based method (Sequence #4)

(i) (j) (k) (l)

Fig. 4. Typical findings of the efficiency of the PGD-based OF obtained on a subset of
greyscale Middlebury video sequences using an image resolution of 64×64 pixels. These results
were generated using the L

1
− L

2 functional. First column: tested images, second column:
color coded gold-standard motion fields (the color scheme used to represent the motion fields
is reported in the upper-right corner of (b)), third column: color coded motion fields estimated
using the non-PGD OF approach, fourth column: color coded motion fields estimated using
the proposed PGD-based OF approach.

sponding pixelwise EE and AE error maps in Fig. 5). Table 1 summarizes results
obtained for all tested Middlebury video sequences using the L1 − L2 functional and
images of resolution 64× 64 pixels. In average over the eight tested sequences, both
endpoint and angular errors were improved by ≈25%, together with a reduction of the
required computation time by a factor close to 6. When the SNR was decreased, per-
formances in terms of both EE, AE and computation time were improved in all tested
sequences using the PGD-based approach, as shown in Table 2. This was achieved in
combination with a further improvement in terms of computation time (an averaged
improvement ratio of 15 was obtained).

Each Table 3, 4 and 5 provides a complete performance summary obtained using
greyscale images, pre-filtered greyscale images and color images, respectively. Each
table reports results obtained under various resolution/functional/SNR conditions us-
ing both the non-PGD and the proposed PGD-based OF approach: Table 3 shows
that, using greyscale 64×64 images, the proposed PGD-based approach outperformed
the non-PGD approach in all tested conditions. It can also be observed that perfor-
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Fig. 5. Pixelwise errors of the motion estimates reported in Fig. 4. First column:
pixelwise endpoint errors obtained using the non-PGD approach, second column: pixelwise
endpoint errors obtained using the proposed PGD-based approach, third column: pixelwise
angular errors obtained using the non-PGD approach, fourth column: pixelwise angular errors
obtained using the proposed PGD-based approach.

Sequence Middlebury EE (pixel) AE (radian) Time (s)
Id sequence name non-PGD PGD non-PGD PGD non-PGD PGD
#1 Dimetrodon 0.40 0.21 0.33 0.20 0.44 0.05
#2 Grove 2 0.32 0.16 0.28 0.15 0.51 0.09
#3 Grove 3 0.25 0.21 0.21 0.17 0.39 0.07
#4 Hydrangea 0.32 0.26 0.26 0.22 0.51 0.13
#5 RubberWhale 0.15 0.11 0.15 0.11 0.10 0.03
#6 Urban 2 0.17 0.17 0.12 0.12 0.29 0.07
#7 Urban 3 0.36 0.31 0.25 0.21 0.58 0.09
#8 Venus 0.18 0.23 0.14 0.18 0.48 0.06

Averaged Improvement 1.31 1.27 5.73
Ratio (AIR)

Pourcentage of Improved 87.5% 87.5% 100%
Sequences (PIS)

Table 1

Performances obtained using the non-PGD and the PGD-based OF approaches on the
tested greyscale Middlebury sequences for an image resolution of 64 × 64 pixels using the
L

1
−L

2 functional. In average over the eight tested Middlebury sequences, both endpoint and
angular errors were improved by ≈25%, together with a reduction of the required computation
time by a factor close to 6.
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Sequence Middlebury EE (pixel) AE (radian) Time (s)
Id sequence name non-PGD PGD non-PGD PGD non-PGD PGD
#1 Dimetrodon 0.29 0.26 0.27 0.23 0.21 0.09
#2 Grove 2 0.28 0.26 0.25 0.22 0.33 0.10
#3 Grove 3 0.31 0.27 0.27 0.22 7.20 0.09
#4 Hydrangea 0.49 0.38 0.34 0.28 1.64 0.15
#5 RubberWhale 0.27 0.19 0.26 0.18 0.40 0.05
#6 Urban 2 0.31 0.29 0.21 0.19 0.72 0.09
#7 Urban 3 0.42 0.40 0.28 0.26 0.52 0.12
#8 Venus 0.30 0.28 0.25 0.23 0.47 0.06

Averaged Improvement 1.17 1.18 15.00
Ratio (AIR)

Pourcentage of Improved 100% 100% 100%
Sequences (PIS)

Table 2

Performances obtained using the non-PGD and the PGD-based OF approaches on the
tested greyscale Middlebury sequences for an image resolution of 64 × 64 pixels using the
L

1
− L

2 functional. Images were previously disturbed by a simulated Gaussian noise (noise
standard deviation equal to 0.3, noise amplitude equal to 5% of the maximum grey level
intensity). Performances in terms of both EE, AE and computation time were in this case
improved in all tested sequences using the PGD-based approach.

Image OF Added EE AE Time
resolution functional noise AIR PIS AIR PIS AIR PIS
64× 64 L2 − L2 No 1.00 37.5 % 1.00 37.5 % 6.93 100.0%

Yes 1.32 100.0 % 1.29 100.0 % 4.56 100.0%
L1 − L2 No 1.31 87.5 % 1.27 87.5 % 5.73 100.0%

Yes 1.17 100.0 % 1.18 100.0 % 15.00 100.0%
128× 128 L2 − L2 No 0.89 12.5 % 0.90 12.5 % 6.96 100.0%

Yes 1.23 87.5 % 1.23 87.5 % 5.27 100.0%
L1 − L2 No 0.97 37.5 % 0.97 37.5 % 7.62 100.0%

Yes 1.09 87.5 % 1.08 87.5 % 7.49 100.0%
Table 3

Summary of the performances obtained for various resolution/functional/SNR condi-
tions using the proposed PGD-based OF approach, as compared to the non-PGD OF ap-
proach. Results were here generated using greyscale images. The results are reported for
image resolutions of 64× 64 and 128× 128 using both L

2
−L

2 and L
1
−L

2 functionals. The
table also reports performances obtained using images previously disturbed by a simulated
Gaussian noise (noise standard deviation equal to 0.3, noise amplitude equal to 5% of the
maximum grey level intensity). Lines of the table corresponding to data-sets for which the
PGD-based approach provided worse EE performances than the non-PGD one are reported
using italic characters.

mances in terms of EE and AE were improved especially when using the L1−L2 norm
and/or noisy data sets. However, using noise-free images of resolution 128×128 pixels,
the non-PGD approach outclassed the PGD approach in terms of motion estimates
accuracy. In noisy data sets, the PGD-based approach outperformed the non-PGD
approach for image resolutions of both 64 × 64 and 128× 128 pixels. Table 4 shows
that, using pre-filtered greyscale images, similar behaviors were observed for both
the non-PGD and the PGD approaches as compared to the scenario without image
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Image OF Added EE AE Time
resolution functional noise AIR PIS AIR PIS AIR PIS
64× 64 L2 − L2 No 1.00 37.5 % 1.00 37.5 % 5.04 100.0%

Yes 1.16 87.5 % 1.14 87.5 % 3.07 100.0%
L1 − L2 No 1.12 37.5 % 1.10 37.5 % 4.97 100.0%

Yes 1.25 100.0 % 1.25 100.0 % 4.63 100.0%
128× 128 L2 − L2 No 0.94 25.0 % 0.93 25.0 % 3.61 100.0%

Yes 1.03 50.0 % 1.04 50.0 % 3.87 100.0%
L1 − L2 No 0.91 25.0 % 0.93 25.0 % 5.07 100.0%

Yes 1.11 87.5 % 1.09 87.5 % 6.58 100.0%
Table 4

Summary of the performances obtained for various resolution/functional/SNR condi-
tions using the proposed PGD-based OF approach, as compared to the non-PGD OF ap-
proach. Again, results were generated using greyscale images. However, both the image to
register and the reference one were here spatially pre-filtered before the motion estimation
process (for this purpose, a 5× 5 Gaussian kernel with a standard deviation equal to 0.3 was
employed). Lines of the table corresponding to data-sets for which the PGD-based approach
provided worse EE performances than the non-PGD one are reported using italic characters.

Image OF Added EE AE Time
resolution functional noise AIR PIS AIR PIS AIR PIS
64× 64 L2 − L2 No 1.04 37.5 % 1.04 37.5 % 3.29 100.0%

Yes 1.16 87.5 % 1.15 87.5 % 2.85 100.0%
L1 − L2 No 1.21 75.0 % 1.18 75.0 % 4.24 100.0%

Yes 1.27 100.0 % 1.25 100.0 % 3.67 100.0%
128× 128 L2 − L2 No 0.91 12.5 % 0.90 12.5 % 7.19 100.0%

Yes 1.00 37.5 % 0.99 37.5 % 5.18 100.0%
L1 − L2 No 0.90 25.0 % 0.92 25.0 % 4.24 100.0%

Yes 1.02 62.5 % 1.04 62.5 % 6.69 100.0%
Table 5

Summary of the performances obtained for various resolution/functional/SNR condi-
tions using the proposed PGD-based OF approach, as compared to the non-PGD OF approach.
Here, the tested OF algorithms were run on color images. Lines of the table corresponding
to data-sets for which the PGD-based approach provided worse EE performances than the
non-PGD one are reported using italic characters.

pre-filtering reported in Table 3.

4. Discussion. As we mentioned earlier, PGD approaches are usually employed
by the mechanical community to accelerate and even assess the solution of multidi-
mensional models [2]. In the context of OF problems, our results interestingly show
that the proposed PGD-based approach is rather beneficial for low image resolution
and/or low SNR:

First, the gain of accuracy is explained as follows: Using the proposed PGD-based
approach, each complete displacement field is fully described by two vectors, each
one having a resolution equal to twice the horizontal and vertical image dimensions,
respectively. In the proposed implementation, this data reduction was achieved using
data integrations performed along horizontal and vertical spatial directions which are
reported in Eq. (2.33) and (2.36). That way, the displacement of a pixel is in a sense
more “global” since it accounts for the data fidelity and the motion regularization of
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a complete row/column of the images. Although it is useful for traditional non-PGD
approaches to introduce a further assumption on the smoothness of the flow field using
a pre-filtering process [5], the PGD approach provides in this case a further gain of
accuracy and computation time on pre-filtered images, as shown in Table 4. Similarly,
while a higher level of information is available on color images (for each pixel, one
information stems from each color channel), the use of the PGD-approach remained
beneficial at low resolution/SNR even on color images.

Secondly, the gain in terms of computation time is explained as follows: While
the non-PGD approach necessitates the solving of a system of N1 × N2 equations,
the PGD approach relies on the successive resolution of two reduced systems, each
one having 2×N1 and 2×N2, respectively. In other words: While image dimensions
have a multiplicative impact on the equation number of the solved system using the
non-PGD approach, an additive impact is substantially obtained using the PGD.
Moreover, it is shown in Tables 1 and 2 that the use of noisy data doesn’t penalize
the computation time when using the PGD, unlike the non-PGD case. The PGD
method, which relies on a “global” approach, introduces an inherent image filtering
arising from the data reduction process described above. In comparison, the non-
PGD algorithm requires a high number of additional iterations in order to cope with
the fact that all local noise-related grey level intensity variations are attributed to
motion. It is interesting to underline that the OF task is a computationally intensive
task that is now usually accelerated using parallel architectures such as Graphical
Processing Units (GPU), especially for high resolution images [22]. Such hardware is
however intrinsically unable to speed up the calculation for the particular case of low
resolution images. Our PGD-based approach is in contrast of particular interest for
such situations.

However, it must be underlined that: When the image resolution is increased, the
additional time loss arising by the calculation of a new tensorial product using the
PGD approach is balanced by the benefit provided by the use of the multi-resolution
scheme with the non-PGD case. More specifically, only a few iterations are necessary
using the traditional non-PGD approach when the algorithm iterates locally close to
the final solution. On the contrary, the PGD-approach necessitates the solving of the
two systems of Eq. (2.33) and (2.36) which are, in such a case, more time consuming
since they seek a more “global” transformation. A good strategy would be to employ
the PGD-based approach for low resolution levels (i.e. lower or equal than 128×128),
leaving high resolution levels performed by the traditional non-PGD approach. That
way, both the accuracy of the motion estimates and the computation time should be
improved for all resolution levels, even the highest ones for which the non-PGD would
iterate around more accurate values.

We restrained this study on OF methods composed by a robust energy in the
data fidelity term and a quadratic penaliser for the regularization term. However,
regularization terms with linear growth at infinity, with respect to gradients, play an
important role in image processing [10]. Future work will thus concern OF methods
composed by a robust energy in both the data fidelity and the regularization term.
For such a regularization class, the adequate functional framework is the space of
bounded variation functions BV (Ω). Unfortunately, in such a case, the convergence
study detailed in this paper will not be valid anymore: The space BV (Ω) has a
non-tensorial structure and thus classical PGD methods cannot be performed in such
situations. This class of regularization will therefore be part of future research. We
also believe that the method should be greatly beneficial in terms of computation time
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for OF applied on 3D data: Since image dimensions have an additive impact on the
number of solved equations using the PGD approach, we anticipate that the benefit
in terms of computation time should be even more important than the one presented
here in the 2D case. We also believe that it may be possible to extend the proposed
PGD approach for other regularization problems such as compressed sensing, image
filtering, image segmentation or in-painting (an overview of variational problems in
image processing can be found elsewere [28]).

The proposed PGD-based approach finally opens great perspectives for the spe-
cific context of real-time applications which necessitate the calculation of motion
estimates with a reduced latency, based on low resolution/low SNR images. An ex-
ample of application scenario can be found in oncology in the domain of real-time
image-guided therapies [27]: The possibility to locally deposit thermal energy in a
non-invasive way opens a path towards new therapeutic strategies with improved
reliability and reduced associated trauma leading to improved efficacy, reduced hospi-
talisation and costs [13]. For tumor located in the abdomen, an accurate image-based
estimation of organ displacement with a low latency is a key requirement. While
MRI appears an image modality of choice, the image-registration algorithm often
has to cope with low resolution/low SNR images [12]. The proposed PGD-based OF
approach thus opens great perspectives in this domain.

5. Conclusion. This paper proposes a new PGD-based OF approach in a clas-
sical framework of Sobolev spaces, i.e. optical flow methods including a robust energy
for the data fidelity term together with a quadratic penalizer for the regularisation
term. The theoretical convergence has been demonstrated, an implementation was
proposed and a practical evaluation has been conducted on a freely available image
collection undergoing various experimental conditions.

The proposed PGD-based approach was found beneficial in terms of both accuracy
and computation time for images containing a weak level of information, namely
low image resolution and/or low SNR. In particular, we believe that the proposed
PGD-based approach opens great perspectives for the specific context of real-time
applications which necessitate the calculation of motion estimates with a reduced
latency, based on low resolution/low SNR images.
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[20] P. Ladevèze and A. Nouy. A multiscale computational method with time and space homoge-
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