
HAL Id: hal-03641062
https://hal.science/hal-03641062

Submitted on 14 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance of Borel-Padé-Laplace integrator for the
solution of stiff and non-stiff problems
Ahmad Deeb, Aziz Hamdouni, Dina Razafindralandy

To cite this version:
Ahmad Deeb, Aziz Hamdouni, Dina Razafindralandy. Performance of Borel-Padé-Laplace integrator
for the solution of stiff and non-stiff problems. Applied Mathematics and Computation, 2022, 426,
�10.1016/j.amc.2022.127118�. �hal-03641062�

https://hal.science/hal-03641062
https://hal.archives-ouvertes.fr

Performance of Borel-Padé-Laplace integrator for the
solution of stiff and non-stiff problems

Ahmad Deeb, Aziz Hamdouni, Dina Razafindralandy∗

Laboratoire des Sciences de l’Ingénieur pour l’Environnement
UMR 7356 La Rochelle Université – CNRS

Avenue Michel Crépeau, 17042 La Rochelle Cedex 1, France

Abstract

A stability analysis of the Borel-Padé-Laplace series summation technique, used
as explicit time integrator, is carried out. Its numerical performance on stiff and
non-stiff problems is analyzed. Applications to ordinary and partial differential
equations are presented. The results are compared with those of many popular
schemes designed for stiff and non-stiff equations.

Keywords: Borel-Laplace summation, divergent series, time integrator, stiff
equations

1. Introduction

Stiff problems occur in many areas of engineering science, such as mechanics,
electrical and chemical engineering (see for instance [1, 2, 3, 4, 5]). However,
their resolution has remained a challenge for numerical analysts. The reason is
that many numerical methods designed for general ordinary differential equa-
tions exhibit a high instability when solving stiff problems, unless an excessively
small time step is used. As a consequence, numerical schemes with better sta-
bility properties have been developed especially for stiff problems.

One method used to estimate the largest time step allowed by a given numer-
ical scheme without breaking its stability is the analysis of the linear stability
domain. The scheme is called A-stable if this domain contains the half com-
plex plane with negative real part, meaning that the scheme is stable in some
sense however large is the time step, for the numerical solution of a 1D linear
equation. The notion of a linear stability domain will be recalled later. See also
[1, 4, 6] for different notions of stability. Of course, even if a scheme is A-stable,
the time step is limited in pratice due to precision requirements.

Among the most widely used numerical schemes for stiff equations, one can
mention implicit linear multistep methods based on backward difference formu-

∗Corresponding author
Email address: drazafin@univ-lr.fr (Dina Razafindralandy)

Preprint submitted to Applied Mathematics and Computation March 24, 2022

ar
X

iv
:2

00
7.

00
39

0v
2

 [
m

at
h.

N
A

]
 2

3
M

ar
 2

02
2

las (BDF) [7, 2]. Their stability is limited to low orders. Indeed, only the first
order (implicit Euler) and second order schemes are A-stable. BDF schemes of
order 3 to 6 exhibit a weaker stability property called A(α)-stability, and the
formulas of order greater than 6 are unstable. A generalization of BDF which
uses a second derivative permits to obtain implicit A(α)-stable schemes up to
order 10. See [1] for instance.

Another important family of numerical schemes for differential equations
are Runge-Kutta methods (RK) [8, 9, 10], which are one-step schemes. Explicit
RK schemes are not A-stable and not suitable for stiff equations. However,
compared to multistep methods, it is easier to find stable implicit Runge-Kutta
schemes. For example, Gauss, Radau IA and IIA, and Lobatto IIIA, IIIB and
IIIC are A-stable [1, 11].

Of course, there exist some other schemes suitable for stiff problems. A
common feature of all these methods is their implicit character. However, the
cost of an implicit scheme may be very high. This is particularly true for long-
time dynamics problems (celestial mechanics, molecular dynamics, . . .) where
the use of implicit methods is hardly conceivable. The development of explicit,
yet with a good enough stability property, numerical schemes is desirable.

An approach which has been used to this aim is to build stabilized RK
schemes [1, 12]. These schemes are not A-stable like the implicit RK schemes
but have a larger stability domain than standard explicit RK schemes.

Other semi-explicit schemes which are built for stiff problems are exponential
time differencing (ETD) integrators. They are based on an exact, exponential
type, resolution of the linear part of the equation. In doing so, the stiff part of
the solution is correctly captured if it is an exponentially decaying term. The
complete solution, the expression of which can be found by the variation of
constants method, is then computed numerically. Various schemes have been
proposed for this task [13, 14, 15, 16, 17, 18]. One of the most popular exponen-
tial integrators is the exponential time differencing associated to an explicit 4-th
order Runge-Kutta method (ETDRK4) developed by Cox and Matthews [19].
The algorithm is not completely explicit since it requires the (pseudo-)inversion
of a matrix. Moreover, they generally need the approximation of the action of
a matrix exponential, which is numerically expensive.

In the present article, we examine the performance of a Borel-Laplace in-
tegrator (BL) in solving stiff and non-stiff systems. BL is an entirely explicit,
arbitrary high-order scheme. It is based on a decomposition of the solution
into its time Taylor series, followed by a Borel-Laplace summation procedure
to accelerate the convergence, or in the case of a divergent series, to obtain an
asymptotical solution. The first goal of the article is the study of the stability
of BL. We will see that, although not A-stable (typical for explicit methods),
BL admits a stability region which grows very fast with the order of the scheme.
This enables large time steps compared to many popular explicit and even im-
plicit schemes in practice. The second goal of the article is to show that BL is
suited to the resolution of stiff equations and to high-dimensional problems.

At its origin, the Borel-Laplace summation method was intended to define
the asymptotic sum of a Gevrey series[20]. It has recently gained more interest

2

when authors showed that the heat equation and many equations in mechanics
(Burgers and Navier-Stokes equations, . . .), quantum physics or astronomy have
divergent but Gevrey Taylor series [21, 22, 23, 24, 25, 26]. The Borel-Laplace
summation method has been transformed into numerical algorithm [27] and used
for the first time as a time integrator by Razafindralandy and Hamdouni [28].
Since then, a number of features of the Borel-Laplace integrator was studied.
For example, it generally allows much larger time steps than other explicit
methods for the resolution of many problems [28]. Its ability to cross some types
of singularities, its high-order symplecticity, or its high-order iso-spectrality in
solving a Lax pair problem have been stated in [29]. Another advantage of BL is
that decreasing or increasing the approximation order is as simple as changing
the value of a parameter in the code. However, nowhere in the cited works
on the Borel-Laplace integrator stiffness has been addressed. One aim of the
present article is, as mentioned, to fill this gap.

The Borel-Laplace algorithm that will be discussed here results from the
representation of the Borel sum as a Laplace integral. It makes use of a Padé ap-
proximation, as will be seen later, and is accordingly named Borel-Padé-Laplace
algorithm (BPL). A representation of the Borel sum as an inverse factorial series
also leads to an efficient algorithm [30] but will not be used.

This paper is organized as follows. In section 2, the Borel-Padé-Laplace
algorithm is briefly recalled. In section 3, a linear stability analysis is carried
out. The stability regions, corresponding to different values of parameters, are
plotted. In section 4, numerical performance on stiff and non-stiff ODE problems
as well as on a PDE is analyzed.

2. Borel-Padé-Laplace integrator

Consider an ordinary differential equation or a semi-discretized partial dif-
ferential equation : 

du

dt
= F (t, u),

u(0) = u0,

(1)

where

u :
[0, T] −→ Rn
t 7−→ u(t)

is the unknown, n ∈ N∗ is the dimension of the system and F is a non-linear
operator

F :
R× Rn −→ Rn
(t, v) 7−→ F (t, v).

Borel-Laplace integrator is based on approximating the solution to (1) via a
(convergent or divergent) time series

û(t) =

∞∑
k=0

ukt
k ∈ (C[[t]])n (2)

3

and performing a Borel-Laplace summation procedure on this series. In equa-
tion (2), C[[t]] stands for the ring of formal power series in t, with complex
coefficients. To simplify, assume that n = 1. The terms uk are obtained by in-
serting directly the series expansion (2) into equation (1). This leads to explicit
relations of the form

uk+1 =
1

k + 1
Fk(u0, · · · , uk) (3)

where Fk is the k−th Taylor coefficient of F (t, u(t)) at t = 0. It is generally a
non-linear function of u0, u1, · · · , uk. The expression of Fk will be explicitely
given for each equation we will be dealing with.

Regarding the validity domain of series (2), there are two possible scenarios.
The first one is that the (exact or numerical) radius of convergence of series is
zero. In this case, a summation procedure is required. A summation procedure
consists in finding an analytic representation (as an integral, a rational function,
a continued fraction, . . .) of the exact solution from the series. The one chosen
here is the Borel-Laplace summation in which the solution is represented by a
Laplace transform of a rational function (see section 2.1).

The other possibility is that the series is convergent with a finite or theoret-
ically infinite radius of convergence. However, if the series converges slowly, the
partial sum

uK(t) =

K∑
k=0

ukt
k (4)

may give an acceptable approximation only for values of t much smaller than the
radius of convergence. In this case, an acceleration of convergence is optional
but advisable.

In the present paper, the Borel-Laplace summation will systematically be
applied to the series. If the series is convergent, it will act as a convergence
acceleration technique. As will be seen, it not only extends the stability region
but also increases the speed of the method.

2.1. Theoretical setting of Borel-Padé-Laplace summation

The theory behind Borel-Laplace summation can be found in many papers
[20, 31, 32, 33] and shall not be reproduced here. Only the computational
aspects are presented. Let us assume that series (2) is a p-Gevrey series in a
neighborhood of the origin, that is,

|uk| ≤ CAk(k!)p, ∀k ≥ 0 (5)

for some positive real numbers A and C. In fact, it is known that most of series
arising in engineering problems are p-Gevrey series for some positive rational
number p. In the sequel, we consider only the case p = 1.

The numerical summation is done in three stages. First, the Borel transform

Bû(ξ) =

∞∑
k=0

Bkξ
k ∈ C[[ξ]] (6)

4

of series (2) is considered. In this expression,

Bk =
uk+1

k!
, k ≥ 0. (7)

Series (6) is convergent at the origin. Next, Bû(ξ) is prolonged analytically into
a function P (ξ) in the vicinity of a semi-line ` of the complex plane, linking
0 to ∞. Lastly, the Laplace transform (at 1/t), which is the formal inverse of
the Borel transform, is applied to the prolonged function. At the end of the
procedure, one gets an integral representation

Sû(t) = u0 +

∫
`

P (ξ)e−ξ/t d ξ

of the solution. The function Sû(t) is called the Borel sum of series (2). The
Borel-Laplace summation procedure is summarized in Table 1.

û(t) =

+∞∑
k=0

ukt
k ∼ Sû(t) = u0 +

∫
`

P (ξ)e−ξ/t d ξ

Borel

y
x Laplace

Bû(ξ) =
+∞∑
k=0

Bkξ
k −−−−−−−−−−−−−−→

Prolongation P (ξ)

Table 1: Borel-Laplace summation

If the initial series (2) is convergent at the origin, then the Borel sum Sû(t)
takes the same value as the original sum (2) for t inside the disc of convergence.
However, the domain of definition of Sû is generally larger than the disc of
convergence of the series û. If the initial series is a divergent but Gevrey series,
Sû is a sectorially analytical function, having the series û as Gevrey asymptotics.

2.2. Algorithm

Numerically, only a finite number of terms uk can be computed. The series
is then represented by the degree K polynomial û(t) ' uK(t)

û(t) ' uK(t) =

K∑
k=0

ukt
k, (8)

that is the partial sum already been defined in (4). The Borel transform of
uK(t) is a degree (K − 1) polynomial. The prolongation is carried out via a
Padé approximation [34, 35]. Other prolongation techniques exist but none of
them has been used as part of a Borel-Laplace based time integrator, to the
best of our knowledge. A usual Gauss-Laguerre quadrature permits to compute
the Laplace transform [36]. In simulations, the semi-line ` is the positive real

5

axis. Due to the realization of the prolongation via a Padé aprroximation, the
algorithm is called Borel-Padé-Laplace (BPL).

The function SuK(t) obtained with BPL provides an approximate solution
to the equation as long as an accuracy criterion is met. When this is no longer
the case, the algorithm (computation of uk’s and Borel summation) is restarted
using the last acceptable value SuK(tf) as initial condition. BPL is then a
step-by-step method over time. One way of evaluating the accuracy of the
approximate solution is to calculate the residue of the equation. This strategy
is rather expensive but, as will be seen, is fast enough to compete with all the
other numerical schemes under consideration.

The Borel-Padé-Laplace algorithm can be summarized as follows, for a one-
dimensional problem, with the residue as quality criteria:

1. Start with t0 = 0 and u0 = u(t0).
2. Compute the first K coefficients of the series û:

uk+1 =
1

k + 1
Fk(u0, . . . , uk), k = 0, · · · ,K − 1

where Fk is the k−th Taylor coefficient of F (t, u(t)) at t = t0.
3. Apply the Borel transformation. In other words, compute the first K

coefficients of Bû:

Bk =
uk+1

k!
, k = 0, · · · ,K − 1.

4. Compute a [Ka/Kb] Padé approximant P (ξ) of the polynomial with coef-
ficients Bk, i.e. determine ak and bk such that

B0 +B1ξ + · · ·+BK−1ξ
K−1 +O(ξK) =

a0 + a1ξ + · · ·+ aKa
ξKa

1 + b1ξ + · · ·+ bKb
ξKb

=: P (ξ).
(9)

5. Obtain the approximate Borel sum by computing the Laplace transform
with a NG-point Gauss-Laguerre quadrature formula1:

SuK(t) = u0 + t

NG∑
i=1

P (tξi)wi. (10)

6. Find tf such that the relative residue norm is smaller than a tolerance
parameter ε for all t ≤ tf :∥∥∥∥∥dSuK

dt
− F

(
t,SuK

)∥∥∥∥∥ < ε
∥∥SuK∥∥ (11)

Take SuK(t) as the approximation of u(t) for t ∈ (t0, tf].

1Note that

∫ +∞

0
P (ξ) e−ξ/t dξ = t

∫ +∞

0
P (tξ) e−ξ dξ

6

7. Return to step 2 with t0 = tf , u0 = SuK(tf).

In this algorithm, Ka andKb are any positive integers such thatKa+Kb = K−1.
Their influence on the stability region will be analyzed in section 3. The reals
ξi are the roots of the NG-th Gauss-Laguerre polynomials and the wi are the
corresponding weights. Note also that a singular value decomposition will be
carried out to improve the robustness of the Padé approximation in numerical
tests, following an algorithm discussed in [37].

In stage 6, the final time tf can be determined as follows. First, we evaluate
the numerical of convergence τ of the series (2) from its K first terms using a
simple criteria developped in [38]. It writes

τ =

(
δ
‖u1‖
‖uK‖

)1/(K−1)

(12)

where δ is a small tolerance parameter such that

‖uK(t)− uK−1(t)‖
‖uK(t)− u0‖

'
‖uKtK‖
‖u1t‖

≤ δ.

Next, we check if (11) is verified by t = τ . If it is, we try further with 2τ , 4τ ,
. . . until condition (11) is not verified any longer. If, on the contrary, the first
try t = τ is not successful, we try further with τ/2, τ/4 and so on. The last
successful value will be taken as tf . The quantity tf − t0 is considered as the
time step of the algorithm.

The cut-off order K can be thought as the order of the scheme. Note that
one advantage of Borel-Laplace integrator is that, in contrast to many schemes
such as BDF or Runge-Kutta, increasing the order is very simple. Increasing K
is enough; the algorithm does not need to be modified, no coefficient has to be
changed.

In the next section, the linear stability of BPL is analysed. We study in
particular the influence of the summation procedure.

3. Stability analysis

First, we recall the notion of stability domain for a discrete scheme. Consider
the scalar linear model problem

du

dt
= λu

u(t0) = u0

(13)

where λ is a complex number with a negative real part. The solution of this
equation decreases exponentially to zero when t grows. Consider an iterative

7

scheme with a constant time step h, providing discrete approximate solutions
vnh ' u(tn) of (13) at discrete times tn = t0 + nh as follows:

vn+1
h = R(λ, h)vnh (14)

for some function R of λ and h. The stability domain of this method is defined
as the following subset of the complex plane [1, 2]:

D = { (λh) ∈ C : |R(λ, h)| < 1 }. (15)

When the time step h is such that λh lies in the stability region, the approximate
solution decreases to zero, like the exact one, when n grows.

BPL is not a discrete scheme, in the sense that it does not provide a discrete
approximation of the solution but a continuous one. It is however relatively
easy to adapt to it the notion of stability domain. For simplicity, assume that
t0 = 0. For equation (13), we have:

F (t, u) = λu and Fk(u0, . . . , uk) = λuk. (16)

Equation (3) permits to compute the coefficients of the time series:

uk+1 =
λuk

k + 1
. (17)

When inserted into series (2), these coefficients lead of course to the Taylor
expansion of the exact solution eλt. It is a convergent series.

We carry out two different linear stability investigations. The first one is
when the solution is approximated by the Taylor series truncated at order K,
without the Borel summation procedure, and the second one is when the solution
is approximated with the BPL scheme. When the summation procedure is not
applied, the method will be called time Asymptotic Numerical Method (ANM)
as in computational solid and fluid mechanics [42]. With ANM, we have:

u(h) =

(
K∑
k=0

(hλ)k

k!

)
u0. (18)

Comparing this relation to (14), we define the domain of linear stability, for a
given truncation order K, as

DK
ANM =

{
z ∈ C such that

∣∣∣∣∣
K∑
k=0

zk

k!

∣∣∣∣∣ ≤ 1

}
. (19)

This domain is plotted in Figure 1 for K from 2 to 10. As can be observed,
DK
ANM grows with K. The growth is however rather slow. Let us use the

positive number |DK
ANM | defined as follows as a quantification of the size of

DK
ANM :

|DK
ANM | = sup

{
d ≥ 0 such that [−d, 0] ∈ DK

ANM

}
. (20)

8

6 5 4 3 2 1 0 1
6

4

2

0

2

4

6

(a) K = 2

6 5 4 3 2 1 0 1
6

4

2

0

2

4

6

(b) K = 3

6 5 4 3 2 1 0 1
6

4

2

0

2

4

6

(c) K = 4

6 5 4 3 2 1 0 1
6

4

2

0

2

4

6

(d) K = 5

6 5 4 3 2 1 0 1
6

4

2

0

2

4

6

(e) K = 6

6 5 4 3 2 1 0 1
6

4

2

0

2

4

6

(f) K = 7

6 5 4 3 2 1 0 1
6

4

2

0

2

4

6

(g) K = 8

6 5 4 3 2 1 0 1
6

4

2

0

2

4

6

(h) K = 9

6 5 4 3 2 1 0 1
6

4

2

0

2

4

6

(i) K = 10

Figure 1: Linear stability regions of the truncated Taylor series approximation (without Borel
summation)

9

2 4 6 8 10 12 14 16 18 20
K

1

2

3

4

5

6

7

8

9

ANM

Figure 2: Size |DKANM | of the stability region when K grows

This quantity increases almost linearly as can be seen in Figure 1. The slope of
the curve is about 0.375.

In fact, the region DK
ANM coincides with the stability region of an explicit

K-th order Runge-Kutta method. The reason to this is that the stability func-
tion of an explicit Runge-Kutta method is a truncated Taylor expansion of the
exponential function.

We now apply the summation procedure to the series. To make it more
concrete, let us set u0 = 1 and K = 4. Like previously, the truncated series
solution is

4∑
k=0

(λt)k

k!
= 1 +

λt

1
+

(λt)2

2
+

(λt)3

6
+

(λt)4

24
. (21)

Its Borel transform reads

3∑
k=0

λk+1

(k + 1)!

ξk

k!
= λ

(
1 +

λξ

2
+

(λξ)2

12
+

(λξ)3

144

)
(22)

We take ka = 1 and kb = 2. The [1/2] Padé approximant of (22) is

P (ξ) = λ
48 + 14λξ

48− 10λξ + (λξ)2
. (23)

We then have the following approximate solution of the linear equation (13)
with the Borel-Padé-Laplace scheme

u(t) ' 1 + t

NG∑
i=1

P (tξi)ωi = 1 + λt

NG∑
i=1

Q(λtξi)ωi (24)

10

where Q is the rational function

Q(z) =
48 + 14z

48− 10z + z2
. (25)

As already mentioned, ξi is the i-th root of the NG-th Laguerre polynomial and
ωi is the corresponding weight in Gauss-Laguerre quadrature. Note that the
Padé approximant (23) has no pole on the integration domain (the real positif
axis) of the Laplace integral.

The stability region of Borel-Padé-Laplace integrator, for K = 4, is

D4
BPL =

{
z ∈ C such that

∣∣∣∣∣1 + z

NG∑
i=0

Q(zξi)ωi

∣∣∣∣∣ ≤ 1

}
. (26)

This region is plotted in Figure 3, with NG = 100 Gauss points, along with the
stability regions for other values of K, ranging from 2 to 10. In this Figure, the
Padé approximant in Borel space is chosen as closed as possible to the diagonal,
that is

Kb = Ka or Kb = Ka + 1 (27)

depending on the parity of K. This choice will be discussed later.
As can be seen in Figure 3, the regions do not include the half complex

plane with negative real part. Indeed, as an explicit scheme, BPL is not A-
stable. However, this figure clearly shows that, for a fixed K ≥ 4, the stability
region of BPL is much wider than that of the simple truncated series scheme
or that of an explicit Runge-Kutta scheme. Note that when K = 2, the Borel
summation has no effect, and the stability region is the same as in Figure 1a.

Another striking point is that the growth of the stability region with K is
not as regular as in the case where the Borel summation is not applied. This
is due to the choice of (almost) diagonal Padé approximant. However, if we
consider either only odd K or only even K, the growth is regular again. In
all cases, the overall growth rate is higher than in Figure (1a). Indeed, let us
quantify the size of DK

BPL as previously with

|DK
BPL| = sup

{
d ≥ 0 such that [−d, 0] ∈ DK

BPL

}
(28)

The dependence of |DK
BPL| on K is plotted in Figure 4 (along with the evolution

of |DK
ANM | for comparison), for K ranging from 2 to 12. The average slope of

the curve of |DK
BPL| is about 0.543.

Since we are in the particular situation where the Taylor coefficients uk of the
solution decrease very rapidly with k, only few terms of the series are numerically
meaningful. More precisely, the coefficients Bk of the Borel transformed series
Bû are below our machine precision (about 2 · 10−16) for k > 11. So, taking
K ≥ 12 does not bring any substantial improvement.

These observations indicate the importance of the Borel summation pro-
cedure, even in a situation where it has not been developed for. Indeed, the
summation procedure enlarges very significantly the stability region, even when

11

8 7 6 5 4 3 2 1 0 1

4

2

0

2

4

(a) K = 2, Padé [0/1]

8 7 6 5 4 3 2 1 0 1

4

2

0

2

4

(b) K = 3, Padé [1/1]

8 7 6 5 4 3 2 1 0 1

4

2

0

2

4

(c) K = 4, Padé [1/2]

14 12 10 8 6 4 2 0
10

5

0

5

10

(d) K = 5, Padé [2/2]

14 12 10 8 6 4 2 0
10

5

0

5

10

(e) K = 6, Padé [2/3]

14 12 10 8 6 4 2 0
10

5

0

5

10

(f) K = 7, Padé [3/3]

14 12 10 8 6 4 2 0
10

5

0

5

10

(g) K = 8, Padé [3/4]

14 12 10 8 6 4 2 0
10

5

0

5

10

(h) K = 9, Padé [4/4]

14 12 10 8 6 4 2 0
10

5

0

5

10

(i) K = 10, Padé [4/5]

Figure 3: Linear stability regions of Borel-Padé-Laplace integrator with increasing K and
close-to-diagonal Padé approximants.

12

2 4 6 8 10 12
K

0

3

6

9

12

15

18

ANM

BPL

Figure 4: Evolution of |DKANM | and |DKBPL| with K

the Taylor series of the solution is convergent, with an infinite radius of conver-
gence. This stability region can even be larger if we play with the parameters
of the Padé approximants in Borel space. For example, we plot in Figure 5
the evolution of DK

BPL with K when Ka is fixed to 1. As can be observed,
the stability domain grows with K and is almost always far larger compared to
Figures 1 and 3. The growth rate is also far higher.

To end up, we would like to analyse graphically the influence of Ka (or Kb)
when K is fixed. The stability regions corresponding to K = 10 and different
Padé degrees are plotted in Figure 6. It can be observed that the stability
region grows with the degree Kb of the Padé denominator. When Ka = 0
(Figure 6j), BPL tends to be A(α)-stable for some angle α. A theoretical study
on the optimal choice of Ka and Kb, which take into account the stability
and the precision, would be very interesting but has not been carried out yet.
In the sequel, a (almost-) diagonal Padé approximant satisfying relation (27)
will be chosen. This is motivated by some good properties of diagonal Padé
(convergence [43, 44, 45], invariance under linear fractional transformation [46],
A-stability of diagonal Padé approximants to the exponential function [1], . . .).
As seen, it may not correspond to an optimal choice but it will be shown that it is
good enough to obtain a very competitive performance in terms of computation
time.

Note that some of the plotted stability regions are not complete. Indeed,
the whole stability regions may contain other parts in the complex plane, but
these parts have been excluded from the graphics.

In the next section, the performance of BPL in solving stiff and non-stiff
equations is analysed. As mentioned, all the previous figures were plotted with
NG = 100 Gauss points. For NG = 20 and for NG = 200, only small changes

13

8 7 6 5 4 3 2 1 0 1

4

2

0

2

4

(a) K = 2, Padé [1/0]

8 7 6 5 4 3 2 1 0 1

4

2

0

2

4

(b) K = 3, Padé [1/1]

8 7 6 5 4 3 2 1 0 1

4

2

0

2

4

(c) K = 4, Padé [1/2]

12 10 8 6 4 2 0

6

4

2

0

2

4

6

(d) K = 5, Padé [1/3]

20 15 10 5 0

10

5

0

5

10

(e) K = 6, Padé [1/4]

60 50 40 30 20 10 0

30

20

10

0

10

20

30

(f) K = 7, Padé [1/5]

250 200 150 100 50 0

100

50

0

50

100

(g) K = 8, Padé [1/6]

250 200 150 100 50 0

100

50

0

50

100

(h) K = 9, Padé [1/7]

250 200 150 100 50 0

100

50

0

50

100

(i) K = 10, Padé [1/9]

Figure 5: Linear stability regions of Borel-Padé-Laplace integrator with increasing K and
fixed Ka = 1

14

20 15 10 5 0

10

5

0

5

10

(a) K = 10, Padé [9/0]

20 15 10 5 0

10

5

0

5

10

(b) K = 10, Padé [8/1]

20 15 10 5 0

10

5

0

5

10

(c) K = 10, Padé [7/2]

20 15 10 5 0

10

5

0

5

10

(d) K = 10, Padé [6/3]

20 15 10 5 0

10

5

0

5

10

(e) K = 10, Padé [5/4]

20 15 10 5 0

10

5

0

5

10

(f) K = 10, Padé [4/5]

20 15 10 5 0

10

5

0

5

10

(g) K = 10, Padé [3/6]

50 40 30 20 10 0
40

30

20

10

0

10

20

30

40

(h) K = 10, Padé [2/7]

250 200 150 100 50 0

100

50

0

50

100

(i) K = 10, Padé [1/8]

3000 2500 2000 1500 1000 500 0
600

400

200

0

200

400

600

(j) K = 10, Padé [0/9]

Figure 6: Linear stability regions of Borel-Padé-Laplace integrator for fixed K = 10 and
decreasing Ka

15

have been recorded for Figure 3. So, for the upcoming numerical tests, NG is
set to 20.

4. Numerical performance

Unless otherwise stated, the order K of BPL is set to 10. The degrees of the
numerator and the denominator of the Padé approximant (9) are Ka = 4 and
Kb = 5.

We compare BPL with some classical numerical schemes. Some of them are
popular choices for solving stiff equations. These schemes have either a forth or
a tenth consistency order.

4.1. Classical schemes

The following schemes are considered.

• The 4-stage 4-th order explicit Runge-Kutta algorithm with a Fehlberg
adaptive time step [47, 1], called RK4 hereinafter.

• The 5-stage 10-th order implicit adaptive Gauss-Legendre method which
is a Runge-Kutta scheme combined with a Gauss-Legendre quadrature [1],
refered as GAU.

• The 4-step 4-th order implicit backward differentiation formula [7, 1], ini-
tialized with RK4, and named BDF in this article.

• The 4-th order exponential time differencing method combined with the
adaptive Runge-Kutta-Fehlberg method [19]. This method is generally
called ETDRK4, but will simply be shortened to ETD.

RK4 has been chosen for its popularity and speed in solving non-stiff equations,
GAU for its order 10 (the same order as that set for BPL), BDF for its popularity
in solving stiff equations and ETD because it is a relatively recent integrator
for stiff equations. All of these methods are adaptive. The step size is updated
at each time iteration with a formula

hn+1 = 0.9hn

(
τ

en+1

) 1
k+1

where k is the order of the scheme and τ is a small tolerance parameter which
can be choosen to adjust the accuracy of the method. en+1 is an estimation
of the local error. Indications on how it is computed are given below for each
scheme.

For RK4 and GAU, which are multi-stage one-step methods, the approxi-
mate solution at t = tn+1 can be written as follows:

un+1 = un + hn(b1k1 + · · ·+ bsks)

16

where s is the number of stages. The intermediate values ki and the coefficients
bi are defined in equation (1.8) and in Table 5.1 of [48] for RK4, and in equa-
tion (7.7) of [48] and in page 71 of [1] for GAU. The estimated error en+1 is
obtained from the difference between un+1 and a second estimation

u∗n+1 = un + hn(b∗1k1 + · · ·+ b∗sks)

of the approximate solution, having at least an order k of constistency. The
coefficients b∗i are provided in Table 5.1 of [48] for RK4. They are defined in [1],
equation (8.16), and in [49], section 2, for GAU.

For BDF, the approximate solution is determined from a relation

an+1
1 un+1 + · · ·+ an+1

s un+1−s = hnf(tn+1, un+1) (29)

where s = 4 is the step number. The coefficients an+1
i , in the adaptive case,

are described in appendix G of [50], subsection G4. The estimation of the local
error is explained in pages 372-373, in Theorem 6.2 and in Table 6.2 of [48].

Lastly, if equation (1) is a scalar ODE then the ETD approximate solution
is defined in [19], equation (29). When equation (1) is not scalar, a pseudo-
inversion and an exponentiation of a matrix is needed. They are carried out
respectively with a singular value decomposition and a matrix Padé approxi-
mation. The local error is obtained from a perturbation of equation (29) of
[19].

All the schemes are implemented entirely in python with a fairly equal effort
in optimization. The computations are run on a single processor. We focus on
accuracy, the size of time step and computation time.

We now apply these schemes to some classes of differential problems.

4.2. Lotka-Volterra equations

Consider a prey-predator system, dynamically governed by the Lotka-Volterra
equations [51]: 

du

dt
= α u− β uv,

dv

dt
= − δ v + γ uv,

(30)

where u and v are respectively the number of preys and predators in the popula-
tion, and α, β, δ, γ are real positive constants. The reproduction parameter α is
the natural (exponential) growth rate of preys in absence of predators whereas
δ is the natural decline rate of predators in absence of preys. βv is the mortality
rate of prey depending on the the number v of predators and δu is the birth
rate of predators depending on the number of prey eaten. It is straight forward
to show that system (30) possesses the first integral:

I(u, v) = βv + γu− α ln v − δ lnu. (31)

We first choose a set of coefficients for which the problem is not stiff.

17

BDF BPL ETD GAU RK4

Mean error 5.56 · 10−7 1.35 · 10−7 7.22 · 10−7 4.6 · 10−7 2.38 · 10−7

Mean time step 2.42 · 10−3 1.65 · 10−1 2.07 · 10−4 3.70 · 10−2 3.10 · 10−2

CPU 5.96 · 102 4.32 9.34 · 102 4.50 · 101 4.96

Table 2: Error on the first integral and CPU time

4.2.1. Non-stiff case

Take an initial population which consists of two preys and one predator, that
is u0 = 2 and v0 = 1. The reproduction/decline parameters are set to α = 2/3
and δ = 2 and the predation parameters to β = 4/3 and γ = 2.

For BPL, the function Fk which operates in the recurrence relation (3) is
defined by

Fk(u0, . . . , uk, v0, . . . , vk) =


αuk + β

k∑
l=0

ulvk−l

−δvk + γ

k∑
l=0

ulvk−l

 . (32)

The parameter ε of BPL which is used in the accuracy criterion (11) is set such
that the mean error on the first integral (31) is about 1.35·10−7 over a simulation
time T = 1000. This mean or overall error is defined as an approximation of

1

T

∫ T

0

∣∣∣∣I(u(t), v(t)
)
− I
(
u(0), v(0)

)∣∣∣∣dt. (33)

The approximate solution over 40 seconds is visualized in Figure 7. It necessi-
tated 254 iterations. To obtain the smooth plots in Figure 7, not only the value
of the solution at the discrete times (ti)i=0,...,254 but also at some intermediate
times t ∈]ti, ti+1[are plotted. In contrast to many other schemes, no interpola-
tion method is needed for this. Formula (10) directly provides the approximate
solution within each interval]ti, ti+1[.

The accuracy parameter τ are set for each step (BDF, ETD, GAU and RK4)
such that their a posteriori accuracies are comparable to that of BPL. The mean
errors are reported in Table 2. They are around 4 · 10−7.

Figure 8a shows the evolution of the time steps of the different methods. The
solution being periodic, only the evolution over the last 100 seconds are plotted.
As can be seen, it is with BPL that the time step is the largest. Since we are in
a non-stiff case, the classical Runge-Kutta method has a good performance and
competes with the 10-th order Gauss scheme in terms of time step. Figure 8b
represents the same data as Figure 8a but with a logarithmic scale in ordinate.
It shows that the time step of BPL is about 60 times larger than that of BDF
and about 80 times as large as that of ETD. It is confirmed in Table 2 which
compares the mean values. As for CPU time, the two explicit integrators, BPL
and RK4, have a comparable performance (see Table 2). They need about 10

18

(a) Time evolution

(b) Trajectory in (u, v) plane

Figure 7: Approximate solution with BPL

19

times less computation time than GAU and at least 100 times less than BDF
and ETD.

In a second test, each scheme is run with multiple values of the (residue or
estimated error) tolerance. The mean time step is plotted in Figure 9 against
the overall accuracy. This figure clearly shows that, amongst the considered
schemes, BPL has always the largest mean time step, whatever the precision.
This mean time step is about 6.6 times as large as that of the Gauss scheme with
the same order, for an error around 3 · 10−9. This large time step results in a
faster computation. Indeed, as can be noticed in Figure 10, BPL requires much
less CPU time than GAU, for comparable precisions. Only RK4 is faster than
BPL for a medium or a low precision. But when a high precision is required,
BPL tends to be more interesting.

4.2.2. Increasing the stiffness ratio

We now examine the behaviour of the schemes when the stiffness ratio varies.
The stiffness ratio r is defined as the spectral condition number of the linear
part of equations (30), that is

r =
max(α, δ)

min(α, δ)
(34)

since α and δ are positive real numbers. For the sake of simplicity, and since
it will be the case in the numerical experiments, assume that δ > α, such that
r = δ/α. In fact, r appears naturally when equations (30) are adimensionalized
with the variables

u∗ =
γu

δ
, v∗ =

βv

α
, t∗ = αt. (35)

Indeed, equations (30) can be written as follows:
du∗

dt∗
= u∗(1− v∗),

dv∗

dt∗
= rv∗(−1 + u∗).

(36)

All the parameters of the equations are kept at the same value as before,
except δ which is increased. As before, simulations are run with multiple values
of the (residue or estimated error) tolerance until 1000 seconds. The error on
the first integral and the CPU time are recorded and plotted hereafter.

For a moderate stiffness ratio r = 8, Figure 11 shows that RK4 and BPL
compete in terms of CPU time, even if BPL indicates a slight advantage for
high precision simulations. It can also be stated in this figure that GAU can
provide a very accurate solution, due to its high order, but with a higher cost
than BPL. BDF and ETD are much more expensive than the other schemes.

For r = 16, we have approximately the same picture, except that BPL
becomes more interesting than RK4 even for moderate precisions. This can be
observed in Figure 12.

20

(a) Linear scales

(b) Semi-logarithmic scale

Figure 8: Non-stiff Lotka-Volterra. Evolution of time step

21

Figure 9: Non-stiff Lotka-Volterra. Evolution of the mean time step with the mean error

Figure 10: Non-stiff Lotka-Volterra. Evolution of CPU with the mean error

22

When the stiffness ratio is set to a high value r = 32, the situation changes
significantly. First, as can be seen in Figure 13, RK4 cannot reach very high
precision any longer, compared to BPL. The precision that can be achieved with
GAU is still very high but not as high as with r = 16. ETD also looses precision.
Only BPL is able to maintain the same precision as previously.

Concerning the numerical cost, the increase of CPU time needed by BPL
and ETD is very small compared to that of GAU.

Lastly, BDF does not appear in Figure 13. Indeed, although it is a popular
method for stiff equations, it fails with r = 32. It diverges as soon as t reaches
few seconds. This behaviour has also been observed with the optimized BDF
solver of the python scipy package, with the optimized BDF solver of Scilab,
and with the option CVODE BDF of the package Sundials of Julia language.

For r = 64, ETD also fails. As remarked in Figure 14, RK4 gives moderately
accurate solutions, and even wrong solutions for some values of the predicted
error tolerance. Indeed, even for very small value of the tolerance, the overall
error may be larger than one. Figure 14 also shows that the precision of GAU
seems to stagnate around 2.6 · 10−4. Only BPL can provide highly accurate
solutions. Moreover, its CPU cost is very small compared to that of GAU.

At last, with r = 128, the Gauss method also fails. This behaviour has as well
been observed with the Gauss solver of the Matlab package numeric::odesolve.
For this value of the stiffness ratio, RK4 cannot give an accurate solution any
longer, whereas with BPL, the error can be as small as 7.4·10−10 (see Figure 15).

These numerical experiments shows that BPL is an interesting alternative
method for stiff problems. First, its arbitrary high order allows to get highly
accurate solutions. With Lotka-Volterra equations, it never fails for values of r
up to 128. Moreover, its cost is generally much smaller than that of the other
methods, due to its explicit property.

The previous tests show the performance of BPL for the resolution of stiff
and non-stiff ODE’s. In the next subsection, we examine its efficiency in solving
partial differential equations.

4.3. Korteweg-de-Vries equation

In this subsection, we consider the Korteweg-de-Vries equation (KdV)

∂u

∂t
+ c0

∂u

∂x
+ β

∂3u

∂x3
+
α

2

∂u2

∂x
= 0 (37)

which models waves on shallow water surfaces [52]. In this equation, the linear
propagation velocity c0, the non-linear coefficient α and the dispersion coefficient
β are positive constants, linked to the gravity acceleration g and the mean depth
d of the water by:

c0 =
√
gd, α =

3

2

√
g

d
, β =

d2c0

6
. (38)

In order to focus on the performance of the time integrators, we choose a
high order scheme, namely a spectral method, for the space discretization. The

23

Figure 11: Lotka-Volterra. Stiffness ratio r = 8

Figure 12: Lotka-Volterra. Stiffness ratio r = 16

Figure 13: Lotka-Volterra. Stiffness ratio r = 32

24

Figure 14: Lotka-Volterra. Stiffness ratio r = 64

Figure 15: Lotka-Volterra. Stiffness ratio r = 128

25

solution is assumed to be periodic with period X in space, and integrable. It is
approximated by its truncated Fourier series:

u(x, t) '
∑
|m|≤M

ûm(t) eimωx, (39)

where M ∈ N and ω = 2π
X . The substitution of equation (39) into (37) leads to

a (2M + 1)-dimensional ODE

dû

dt
= Aû+N(û) (40)

where the array û contains the unknowns ûm, A is a diagonal matrix with
diagonal entries

Amm = −c0iωm+ iβω3m3 (41)

and N(û) is a non-linear array containing convolution terms:

N(û) = −
1

2
iαmω û ∗ û. (42)

Convolution operations are performed in physical space and the standard dealias-
ing 3/2 rule is applied.

With BPL, each component ûm(t) of the Fourier coefficient array û(t) is
decomposed into its Taylor series

ûm(t) =

K∑
k=0

ûmk t
k. (43)

The series coefficients are computed explicitely as follows:

ûk+1 =
1

k + 1

[
(−c0iωm+ iβω3m3)ûk −

1

2
iαmω

k∑
l=0

ûn ∗ ûk−l

]
. (44)

For the simulations, the initial condition is the periodic prolongation of the
function

u0(x) = U sech2(κx), x ∈
[
−X

2
,
X

2

]
, (45)

U being a constant and κ =
√

3U
4d3 . The corresponding exact solution is the

traveling wave
u(x, t) = u0(x− ct). (46)

with c = c0
(
1 + U

2d

)
. We take X = 24π, d = 2, g = 10 and U = 1

2 . The solution
is periodic in time, with a period T ' 14.986s.

We use D = 2M to indicate the size of the system, instead of the dimension
2M + 1 of equation (40). The simulations are run over one period, for some
values of D between 64 and 512.

26

D BDF BPL ETD GAU RK4
64 1.09 · 10−1 3.71 · 10−4 2.92 · 10−3 5.11 · 10−3 1.83 · 10−3

128 1.08 · 10−2 3.54 · 10−4 3.27 · 10−3 5.81 · 10−3 1.69 · 10−3

256 – 3.61 · 10−4 3.66 · 10−3 4.00 · 10−3 1.23 · 10−3

512 – 3.17 · 10−4 4.11 · 10−3 2.65 · 10−3 6.50 · 10−4

Table 3: KdV. Overall error

100 200 300 400 500
D

101

102

103

104

105

106

CP
U

BDF
BPL
ETD
GAU
RK4

Figure 16: KdV. Evolution of the computation time with the size D of the problem

It is hard to calibrate the tolerance parameter τ of all the schemes to have
the same (a posteriori) overall error at each value of D. So, this calibration has
not been done. Instead, we require more accuracy to BPL than to the other
methods, in order not to overestimate the performance of BPL. The overall error
are recorded in Table 3. The error reported in this table is an approximation of∫ T

0

‖ucomputed(t)− uexact(t)‖
‖uexact(t)‖

dt. (47)

The evolution of the computation time of each scheme is plotted in Figure
16. It can be seen there that BDF requires a very high cost for D = 128, despite
the low precision (see second column of Table 3). As a consequence, it has not
been used for higher values of D.

Figure 16 also shows that, among the considered schemes, RK4 is the fastest
for (non-stiff) small-sized problems, for the given precisions. But for high de-
grees of freedom, BPL becomes the most interesting in terms of computational
time. BPL also has the smallest slope.

Figure 17 indicates that BPL has a very large mean time step compared
to the other schemes, whatever the size of the problem is. It is also striking
that the mean time step does not vary very much with the size of the problem.

27

100 200 300 400 500
D

10 6

10 5

10 4

10 3

10 2

10 1

M
ea

n
tim

e
st

ep

BDF
BPL
ETD
GAU
RK4

Figure 17: KdV. Evolution of the mean time step with the size D of the problem

However, BPL is not the only scheme which presents this characteristics since
ETD exhibits the same behavior, but with much smaller time steps.

The large time step of BPL is of a great importance in its performance.
Indeed, the CPU time spent at each time step is very high with BPL in com-
parison to the other schemes, as can be stated in Figure 18. One reason for
this is the evaluation of the residue in step 6 of the algorithm presented in sec-
tion 2.2. This evaluation is done multiple times at each time step to decide if
the solution is still accurate enough. Another precision evaluation is desirable,
but not available yet. Fortunately, this expensive precision evaluation is largely
counter-balanced by large time steps.

In all of the previous simulations, the order K of the time series in BPL
was set to 10. In our last test, the effect of K on the performance of BPL is
analysed. For this, the size of the problem is set to D = 128. A residue tolerance
ε = 1 ·10−4 is chosen. Figure 19 shows the L1 relative error (defined in equation
(47)) over one period. This figure reveals a fluctuation of the error according to
the parity of K. Note that such fluctuation is not uncommon when manipulating
truncated series. Moreover, the parity of K intervenes in the choice of the Padé
approximants in Borel space. Indeed, when K is odd, the numerator and the
denominator of the Padé approximant have the same degree; and when K is
even, the denominator has a higher degree than the numerator (see choice in
equation (27)). Figure 19 however tells us that globally, the accuracy increases
with the order K of the series, for a fixed value of the residue tolerance.

The mean time step has also a globally increasing tendency with K as can be
seen in Figure 20, passing from ∆tmean = 0.0256 for K = 4 to ∆tmean = 0.156
when K = 14. As a consequence, the CPU time decreases with K, as can
be noted in Figure 21. These results tend to indicate that high values of K
accelerate the computation.

28

100 200 300 400 500
D

10 3

10 2

10 1

100
M

ea
n

CP
U

pe
r t

im
e

st
ep

BDF
BPL
ETD
GAU
RK4

Figure 18: KdV. Mean CPU time per time step

Figure 19: KdV. Evolution of the error with K

29

Figure 20: KdV. Evolution of the mean time step with K

Figure 21: KdV. Evolution of the computation time with K

30

5. Conclusion

In this article, we studied the linear stability of the Borel-Padé-Laplace in-
tegrator. It has been shown that if the summation procedure is not applied, the
scheme has the same linear stability domain as an explicit Runge-Kutta integra-
tor. But when the summation is carried out, the linear stability domain enlarges
very significantly, even when the Taylor series of the solution is convergent. It
has been obsereved that the size of this domain increases with the truncation
order of the series. We also saw that the choice of Padé approximants in Borel
space has a substantial impact on the size of the linear stability domain.

Even if BPL is not A-stable, it has been shown that this scheme is more
efficient than many explicit and implicit ones, in solving stiff problems. It runs
without any particular difficulty for a wide range of values of the stiffness ratio.
Due to its high order, it can reach very high precisions even when the stiffness
number is high. Moreover, its explicit property makes it very fast compared to
the other integrators.

Numerical tests on non-stiff Lotka-Volterra and on Korteweg-de-Vries equa-
tions showed that for small-size systems, the popular 4-th order Runge-Kutta
method has a comparable speed than BPL when only a moderate precision is
needed. But when high precision is required BPL becomes more interesting. It
is even more true when the size of the system is large.

It is worth to notice that increasing the approximation order of BPL does not
require any programming effort. One has simply to raise the cut-off parameter
K of the series, without changing anything else in the algorithm. As could be
observed in the last part of the article, the higher this value is, the faster BPL
is.

Despite its speed, one optimization should be brought to the algorithm of
BPL. Indeed, a numerical test with Korteweg-de-Vries equation showed that a
BPL time step is rather expensive, due among others to many evaluations of
the residue. A more efficient accuracy estimation should be developed. This
should increase the speed of the scheme.

To obtain the previous results, the computation was done on a single proces-
sor. Note however that BPL also presents some advantage regarding paralleliza-
tion. Indeed, the summation algorithm can be done component-wise, letting the
computation to be shared between many processors.

In this paper, only the computational aspects of BPL are discussed. The
founding theory was skipped. Yet, some optimizations may be brought to the
algorithm with help of theoretical considerations. For instance, a theoretical
study of the equation may be helpful to determine the actual Gevrey order
(which was set to one in this article). However, it is conceivable to evaluate
numerically this Gevrey order from the coefficients of the series. A theoretical
study of the equation may also help to find a better (than the real positive
semi-line) integration direction in the Laplace transform.

31

References

[1] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems, Second Revised, Corrected second print-
ing Edition, Springer Series in Computational Mathematics, Springer, 2002.

[2] A. Iserles, A first course in the numerical analysis of differential equations,
Cambridge University Press, 1996.

[3] J. Butcher, Numerical Methods for Ordinary Differential Equations, J. Wi-
ley & Sons, Ltd., 2003.

[4] J. D. Lambert, Numerical Methods for Ordinary Differential Systems: The
Initial Value Problem, Wiley, 1991.

[5] R. Willoughby (Ed.), Stiff differential systems, Plenum Press, 1974.

[6] W. Hackbusch, The Concept of Stability in Numerical Mathematics, Vol. 45
of Springer Series in Computational Mathematics, Springer, 2014.

[7] C. F. Curtiss, J. O. Hirschfelder, Integration of stiff equations, Proceedings
of the National Academy of Sciences of the United States of America 38 (3)
(1952) 235–243.

[8] C. Runge, Über die numerische Auflösung von Differentialgleichungen,
Mathematische Annelen 46 (1895) 167–178.

[9] J. Butcher, Coefficients for the study of Runge-Kutta integration processes,
Journal of the Australian Mathematical Society 3 (2) (1963) 185–201.

[10] J. Butcher, A history of Runge-Kutta methods, Applied Numerical Math-
ematics 20 (3) (1996) 247–260.

[11] J. Butcher, Numerical Methods for Ordinary Differential Equations, 3rd
Edition, Wiley, 2016.

[12] J. Verwer, Explicit Runge-Kutta methods for parabolic partial differential
equations, Applied Numerical Mathematics 22 (1) (1996) 359 – 379.

[13] A. Friedli, Verallgemeinerte Runge-Kutta Verfahren zur Lösung steifer Dif-
ferentialgleichungssysteme, in: Bulirsch, Grigorieff, Schröder (Eds.), Nu-
merical Treatment of Differential Equations, Oberwolfach 1976, Springer
Berlin Heidelberg, 1978, pp. 35–50.

[14] P. Norsett, An a-stable modification of the Adams-Bashforth methods, in:
J. L. Morris (Ed.), Conference on the Numerical Solution of Differential
Equations, Dundee/Scotland, Springer Berlin Heidelberg, 1969, pp. 214–
219.

[15] P. v. d. Houwen, J. Verwer, Generalized linear multistep methods, 1 : De-
velopment of algorithms with zero-parasitic roots, Stichting Mathematisch
Centrum. Numerieke Wiskunde 74 (10) (1974) 1–16.

32

[16] J. Certaine, The solution of ordinary differential equations with large time
constants, Mathematical methods for digital computers (1960) 128–132.

[17] M. Hochbruck, A. Ostermann, Exponential Runge–Kutta methods for
parabolic problems, Applied Numerical Mathematics 53 (2) (2005) 323 –
339.

[18] M. Hochbruck, A. Ostermann, Exponential integrators, Acta Numerica 19
(2010) 209–286.

[19] S. Cox, P. Matthews, Exponential time differencing for stiff systems, Jour-
nal of Computational Physics 176 (2) (2002) 430 – 455.

[20] E. Borel, Leçons sur les séries divergentes, Gauthier-Villars, 1901.

[21] D. Lutz, M. Miyake, R. Schäfke, On the Borel summability of divergent
solutions of the heat equation, Nagoya Mathematical Journal 154 (1999)
1–29.

[22] G. Lysik, Borel summable solutions of the Burgers equation, Annales
Polonici Mathematici 95 (2009) 187–197.

[23] O. Costin, S. Tanveer, Borel summability of Navier-Stokes equation in R3

and small time existence, ArXiv Mathematics e-prints (dec 2006). arXiv:
math/0612063.

[24] F. Dyson, Divergence of perturbation theory in quantum electrodynamics,
Physical Review 85 (1952) 631–632.

[25] I. Suslov, Divergent perturbation series, Journal of Experimental and The-
oretical Physics 100 (6) (2005) 1188–1233.

[26] G. Kontopoulos, Order and chaos in dynamical astronomy, Astronomy and
astrophysics library, Springer, Berlin, Heidelberg, New York, 2002.

[27] J. Thomann, Formal and numerical summation of formal power series so-
lutions of ODE’s, Tech. rep., CIRM Luminy (2000).

[28] D. Razafindralandy, A. Hamdouni, Time integration algorithm based on di-
vergent series resummation, for ordinary and partial differential equations,
Journal of Computational Physics 236 (2013) 56–73.

[29] A. Deeb, A. Hamdouni, E. Liberge, D. Razafindralandy, Borel-Laplace
summation method used as time integration scheme, ESAIM: Procedings
and Surveys 45 (2014) 318–327.

[30] A. Deeb, A. Hamdouni, D. Razafindralandy, Comparison between Borel-
Padé summation and factorial series, as time integration methods, Discrete
and Continuous Dynamical Systems - Serie S 9 (2) (2016) 393–408.

33

http://arxiv.org/abs/math/0612063
http://arxiv.org/abs/math/0612063

[31] J.-P. Ramis, Poincaré et les développements asymptotiques (Première par-
tie), Gazettes des Mathématiques 133 (Juillet 2012).

[32] J.-P. Ramis, Les développements asymptotiques après Poincaré : continuité
et... divergences, Gazettes des Mathématiques 134 (octobre 2012).

[33] O. Costin, Asymptotics and Borel Summability, Monographs and Surveys
in Pure and Applied Mathematics, CRC Press, 2008.

[34] C. Brezinski, Rationnal approximation to formal power serie, Journal of
Approximation Theory 25 (4) (1979) 295–317.

[35] C. Brezinski, J. Van Iseghem, Padé approximations, in: P. G. Ciarlet, J. L.
Lions (Eds.), Handbook of Numerical Analysis, Vol. 3, Elsevier, 1994, pp.
47 – 222.

[36] A. Stroud, D. Secrest, Gaussian quadrature formulas (without numerical
tables), Prentice-Hall, 1966.

[37] P. Gonnet, S. Güttel, L. Trefethen, Robust Padé approximation via SVD,
SIAM Review 51 (1) (2013) 101–117.

[38] B. Cochelin, A path-following technique via an asymptotic-numerical
method, Computers and Structures 53 (1994) 1181–1192.

[39] H. Zahrouni, W. Aggoune, J. Brunelot, M. Potier-Ferry, Asymptotic nu-
merical method for strong nonlinearities, Revue Européenne des Eléments
Finis 13 (1-2) (2004) 97–118.

[40] M. Bücker, G. Corliss, U. Naumann, P. Hovland, B. Norris (Eds.), Auto-
matic differentiation: applications, theory, and implementations, Vol. 50 of
Lecture Notes in Computational Science and Engineering, Springer, 2006.

[41] A. Griewank, A. Walther, Evaluating derivatives. Principles and techniques
of algorithmic differentiation, 2nd Edition, Frontiers in Applied Mathemat-
ics, SIAM, 2008.

[42] B. Cochelin, N. Damil, M. Potier-Ferry, Méthode asymptotique numérique,
Methodes numériques, Hermes Lavoisier, 2007.

[43] G. A. Baker Jr., J. Gammel, J. Wills, An investigation of the applicability
of the Padé approximant method, Journal of Mathematical Analysis and
Applications 2 (1961) 405–418.

[44] J. Nuttall, The convergence of Padé approximants of meromorphic func-
tions, Journal of Mathematical Analysis and Applications 31 (1) (1970) 147
– 153.

[45] G. Baker, Defects and the convergence of Padé approximants, Acta Appli-
candae Mathematica (2000).

34

[46] G. Baker, Essentials of Padé Approximants, Elsevier Science, 1975.

[47] E. Fehlberg, Klassische Runge-Kutta-Formeln vierter und niedrigerer
Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf
Wärmeleitungsprobleme, Computing 6 (1) (1970) 61–71.

[48] E. Hairer, S. Nørsett, G. Wanner, Solving Ordinary Differential Equations
I: Nonstiff Problems, Second Revised, Corrected third printing Edition,
Springer Series in Computational Mathematics, Springer, 2008.

[49] J. de Swart, G. Söderlind, On the construction of error estimators for im-
plicit Runge-Kutta methods, Journal of Computational and Applied Math-
ematics 86 (1997) 347–358.

[50] T. Co, Methods of Applied Mathematics for Engineers Scientists, Michigan
Technology University, Cambridge University Press, 2013.

[51] J. Hofbauer, K. Sigmund, The Theory of Evolution and Dynamical Sys-
tems: Mathematical Aspects of Selection, London Mathematical Society
Student Texts, Cambridge University Press, 1988.

[52] D. Korteweg, G. de Vries, On the change of form of long waves advanc-
ing in a rectangular canal, and on a new type of long stationary waves,
Philosophical Magazine 39 (240) (1895) 422–443.

35

	1 Introduction
	2 Borel-Padé-Laplace integrator
	2.1 Theoretical setting of Borel-Padé-Laplace summation
	2.2 Algorithm

	3 Stability analysis
	4 Numerical performance
	4.1 Classical schemes
	4.2 Lotka-Volterra equations
	4.2.1 Non-stiff case
	4.2.2 Increasing the stiffness ratio

	4.3 Korteweg-de-Vries equation

	5 Conclusion

